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Local reasoning has become a well-established technique in program verification, which

has been shown to be useful at many different levels of abstraction. In separation logic,

we use a low-level abstraction that is close to how the machine sees the program state.

In context logic, we work with high-level abstractions that are close to how the clients of

modules see the program state. We apply program refinement to local reasoning,

demonstrating that high-level, abstract local reasoning is sound for module

implementations. We consider two approaches: one that preserves the high-level locality

at the low level; and one that breaks the high-level ‘fiction’ of locality.
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1. Introduction

Hoare logic (?) is an important tool for formally proving correctness properties of pro-
grams. It takes advantage of modularity by treating program fragments in terms of prov-
able specifications. However, heap programs tend to break this type of modular reasoning
by permitting pointer aliasing. For instance, the specification that a program reverses
one list does not imply that it leaves a second list alone. To achieve this disjointness
property, it is necessary to establish disjointness conditions throughout the proof.

O’Hearn, Reynolds, and Yang (2001) introduced separation logic for reasoning locally
about heap programs, in order to address this problem. The fundamental principle of local
reasoning is that, if we know how a local computation behaves on some state, then we
can infer the behaviour when the state is extended: it simply leaves the additional state
unchanged. A program is specified in terms of its footprint — the resource necessary for
it to operate — and a frame rule is used to infer that any additional resource is indeed
unchanged. For example, given a proof that a program reverses a list, the frame rule
can directly establish that the program leaves a second disjoint list alone. Consequently,
separation logic enables modular reasoning about heap programs. Calcagno, O’Hearn,
and Yang (2007b) developed abstract separation logic to provide a general theory and
semantic basis for separation logics based on variants of the heap model.

Abstraction (see e.g. ??) and refinement (see e.g. Hoare, 1972; de Roever and En-
gelhardt, 1999) are also essential for modular reasoning. Abstraction takes a concrete
program and produces an abstract specification; refinement takes an abstract specifica-
tion and produces a correct implementation. Both approaches result in a program that
correctly implements an abstract specification. Such a result is essential for modular-
ity because it means that a program can be replaced by any other program that meets
the same specification. Abstraction and refinement are well-established techniques in
program verification, but have so far not been fully understood in the context of local
reasoning.

Parkinson and Bierman (2005) introduced abstract predicates in separation logic to
provide abstract reasoning. An abstract predicate is, to the client, an opaque object that
encapsulates the unknown representation of an abstract datatype. They inherit some
of the benefits of locality from separation logic: an operation on one abstract predicate
leaves others alone. However, the client cannot take advantage of local behaviour that is
provided by the abstraction itself.

Consider a set module. The operation of removing, say, the value 3 from the set is
local at the abstract level; it is independent of whether any other value is in the set.
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Yet, consider an implementation of the set as a sorted, singly-linked list in the heap,
starting from address h. The operation of removing 3 from the set must traverse the
list from h. The footprint, therefore, comprises the entire list segment from h up to the
node with value 3. With abstract predicates, the abstract footprint corresponds to the
concrete footprint and hence, in this case, includes all the elements of the set less than or
equal to 3. Consequently, abstract predicates cannot be used to present a local abstract
specification for removing 3.

Calcagno, Gardner, and Zarfaty (2005) introduced context logic, a generalisation of
separation logic, to provide abstract local reasoning about abstract data structures. Con-
text logic has been used to reason about programs that manipulate data structures,
such as sequences, multisets and trees (Calcagno et al., 2007a). In particular, it has
been successfully applied to reason about the W3C DOM tree update library (Gardner
et al., 2008). Thus far, context logic reasoning has always been justified with respect to
an operational semantics defined at the same level of abstraction as the reasoning. In
this paper, we combine abstract local reasoning with data refinement, to refine abstract
module specifications into correct implementations.

? (?; Mijajlović et al. 2004) have previously considered data refinement for local rea-
soning, in the context of heap programs. They observed that a client can violate a mod-
ule’s abstraction boundary by dereferencing pointers to the module’s internal state, and
thereby break the refinement between abstract and concrete module implementations. In
their motivating example, a simple memory allocator, a client can violate the concrete
allocator’s free list through pointers to memory that has been deallocated; the abstract
allocator, which maintains a free set, is unaffected by such an access, hence the refinement
breaks. Their solution was to “blame the client” by introducing a modified operational
semantics that treats such access violations as faulting executions. Using special simu-
lation relations, they were able to recover soundness of data refinement. They illustrate
their approach with the example of a toy memory manager. Their techniques adapt to
different data store models, however, both module and client use the same model.

In this work, we apply data refinement to local reasoning, demonstrating that abstract
local reasoning is sound for module implementations. By contrast with ?, we work with
the axiomatic semantics, rather than operational semantics, of the language, defining
proof transformations that establish that concrete implementations simulate abstract
specifications. This avoids having to consider badly behaved clients, since the proof sys-
tem only makes guarantees about well behaved clients. Furthermore, the abstract and
concrete levels in our refinements typically have different data store models, meaning
that the concept of locality itself is different at each level.

The motivating example of this paper is the stepwise refinement of a tree module T,
illustrated in Fig. 1. We present two different refinements from the tree module T to
the familiar heap module of separation logic H. The first, τ1, described in §5.4, uses a
direct implementation of trees in the heap in which each tree node is represented by a
contiguous block of heap cells.

The second refinement uses an abstract list module L as an intermediate step in the
refinement. We first show how the tree module T may be correctly implemented in the
combination of the heap and list modules, H + L. This step, translation τ2, is described
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Fig. 1. Module translations presented in this paper

in §5.5. We also show that the list module L can be correctly implemented using the
heap module H. This is translation τ4, which is described in §6.3. Because our approach
is modular, this translation can be lifted to a translation from the combined heap and
list module H + L to the combination of two heap modules H + H. (This is illustrated
by the dotted arrow in Fig. 1.) To complete the refinement, in §?? we show that the
double-heap module H + H can be trivially implemented by the heap module H.

Our development introduces two general techniques for verifying module implemen-
tations with respect to their local specifications, using the data refinement technique
known as forward simulation (L-simulation in de Roever and Engelhardt, 1999). We in-
troduce locality-preserving and locality-breaking translations. Locality-preserving trans-
lations, broadly speaking, relate locality at the abstract level with locality of the im-
plementation. However, implementations typically operate on a larger state than the
abstract footprint, for instance, by performing pointer surgery on the surrounding state.
We introduce the notion of crust to capture this additional state. This crust intrudes on
the context, and so breaks the disjointness that exists at the abstract level. We therefore
relate abstract locality with implementation-level locality through a fiction of disjoint-
ness.

With locality-breaking translations, locality at the abstract level does not correspond
to locality of the implementation. Even in this case, we can think about a locality-
preserving translation using possibly the whole data structure as the crust. Instead, we
prove soundness by establishing that the specifications of the module commands are pre-
served under translation in any abstract context, showing the soundness of the abstract
frame rule. We thus establish a fiction of locality at the abstract level.

1.1. Dedication

This paper is dedicated to the memory of Robin Milner. Milner was an early pioneer
of program verification, creating the LCF system (?) for assisting a user in proving
properties about programs. Milner also achieved substantial research on modularity and
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abstraction: he emphasised the use of program modules to provide abstract data types
using ML modules (?); he developed full abstraction (?), providing a strong link be-
tween denotational and operational semantics; he introduced the theory of bisimulation
for concurrent processes, for example demonstrating that a process corresponding to a
specification has the same behaviour as a process describing an implementation. More
recently, he was one of the leaders of the UK Grand Challenge Global Ubiquitous Com-

puting: Design and Science, in which he highlighted a key aim: ‘to develop a coherent
informatic science whose concepts, calculi, theories and automated tools allow descrip-
tive and predictive analysis of global ubiquitous computing at each level of abstraction.’
Our work resonates well with this aim, by introducing a coherent theory of abstract
local reasoning which refines abstract local specifications about modules into correct
implementations.

1.2. Acknowledgements

We acknowledge the support of EPSRC Programme Grant “Resource Reasoning”. Gard-
ner acknowledges the support of a Microsoft/RAEng Senior Research Fellowship. Dinsdale-
Young and Wheelhouse acknowledge the support of EPSRC DTA awards. We thank Mo-
hammad Raza and Uri Zarfaty for detailed discussions of this work. In particular, some
of the technical details in our locality-preserving translations come from an unpublished
technical report Reasoning about High-level Tree Update and its Low-level Implementa-
tion written by Gardner and Zarfaty in 2008.

2. Preliminaries

We introduce the syntax and axiomatic semantics for a basic imperative programming
language, which includes mutable variables and standard control-flow constructs such as
while loops and procedure calls. As well as variables, programs operate on a mutable
data store. The programming language is parametrised by the operations on the data
store, so that it can be tailored to different domains. For example, standard commands
for manipulating heaps, lists and trees.

2.1. Programming Language

We define the syntax of our programming language, which is parametrised by a set of
basic commands Cmd, ranged over by ϕ. The choice of these basic commands depends
on the domain over which the language is to be used: for instance, to work with the
heap, commands for allocation, mutation, lookup and disposal of heap cells would be
necessary; to work with a list, commands for lookup, insertion and removal of elements
would be necessary; and to work with a tree, commands for lookup, node insertion and
subtree deletion would be necessary.

We assume a syntax for value expressions E ∈ Expr that includes variable look-up,
constant values and basic arithmetic operations. Similarly, we assume a syntax for boolean
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expressions B ∈ BExp that includes equality and inequality on value expressions, and
standard boolean operators.

Definition 2.1 (Programming Language Syntax). Given a set of basic commands
Cmd, ranged over by ϕ, the language LCmd is the set of syntactically valid programs,
making use of these basic commands, ranged over by C,C1, . . . , defined as:

C ::= ϕ
∣∣ skip

∣∣ x := E
∣∣ C1; C2∣∣ if B then C1 else C2

∣∣ while B do C∣∣ procs −→r1 := f1(−→x1) {C1}, . . . ,−→rk := fk(−→xk) {Ck} in C∣∣ call r1, . . . , r i := f(E1, . . . ,Ej)
∣∣ local x in C

where x , r1, . . . ∈ Var range over program variables, −→x i,−→r i ∈ Var∗ range over vectors
of program variables, E,E1, . . . ∈ Expr range over expressions, B ∈ BExp ranges over
Boolean expressions, and f, f1, . . . ∈ PName range over procedure names. The names
f1, . . . , fk of procedures defined in a single procs− in block are required to be pairwise
distinct. The parameter and return variables are required to be pairwise distinct within
each procedure definition.

2.2. State Model

We work with multiple data structures at multiple levels of abstraction. To handle these
structures in a uniform way, we model our program states using context algebras. Context
algebras are a generalisation of separation algebras (Calcagno et al., 2007b) to more
complex data structures. Separation algebras are based on a commutative combination
of resource, whereas context algebras are instead based on non-commutative resource
combinations, which is necessary to handle structured data, such as lists and trees. We
will see that many interesting state models fit the pattern of a context algebra.

Definition 2.2 (Context Algebra). A context algebra A = (C,D, ◦, •, I,0) consists of

— a non-empty set of contexts, C,
— a non-empty set of abstract data structures, D,
— a context composition operator, ◦ : C× C ⇀ C,
— an application operator, • : C× D ⇀ D,
— a distinguished set of contexts, I ⊆ C, and
— a distinguished set of abstract data structures, 0 ⊆ D,

for which the following properties hold: for all c, c′, c′′ ∈ C, d ∈ D, and i′ ∈ I

— c ◦ (c′ ◦ c′′) = (c ◦ c′) ◦ c′′ (that is, composition is associative);
— c ◦ (c′ • d) = (c ◦ c′) • d (that is, composition associates with application);
— i ◦ c is defined for some i ∈ I, and whenever i′ ◦ c is defined, i′ ◦ c = c (that is, I is a

left identity of ◦);
— c ◦ i is defined for some i ∈ I, and whenever c ◦ i′ is defined, c ◦ i = c (that is, I is a

right identity of ◦);
— i • d is defined for some i ∈ I, and whenever i′ • d is defined, i′ • d = d (that is, I is a

left identity of •); and
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— the relation {(c, d)
∣∣ ∃o ∈ 0. c • o = d} is a total surjective function.

(Undefined terms are considered equal.)

Example 1. The following are examples of context algebras:

(a) Heaps h ∈ Heap are defined as:

h ::= emp
∣∣ a 7→ v

∣∣ h ∗ h
where a ∈ Addr ranges over unique heap addresses, v ∈ Val ranges over values, and
∗ is associative and commutative with identity emp. (Heaps are thus finite partial
functions from addresses to values.) Heaps form the heap context algebra, AH =
(Heap,Heap, ∗, ∗, {emp} , {emp}). All separation algebras (Calcagno et al., 2007b) can
be viewed as context algebras in this way.

(b) Variable scopes ρ ∈ Scope are defined as:

ρ ::= emp
∣∣ x ⇀⇁ v

∣∣ ρ ∗ ρ
where x ∈ Var ranges over unique program variables, v ∈ Val ranges over values, and
∗ is associative and commutative with identity emp. Variable scopes form the variable
scope context algebra, AScope = (Scope,Scope, ∗, ∗, {emp} , {emp}). The variable scope
context algebra allows us to treat variables as resource (?).

(c) Lists l ∈ Lst and list contexts lc ∈ CLst are defined as:

l ::= ∅
∣∣ v ∣∣ l1 · l2

lc ::= −
∣∣ lc · l

∣∣ l · lc

where values v ∈ Val are taken to occur uniquely in each list or list context and · is
taken to be associative with identity ∅. Context application • : CLst × Lst ⇀ Lst and
composition ◦ : CLst × CLst ⇀ CLst are defined in terms of substitution as:

lc • l def= lc[l/−] provided that lc[l/−] ∈ Lst

lc ◦ lc′ def= lc[lc′/−] provided that lc[lc′/−] ∈ CLst.

Both operators are clearly non-commutative. Lists and list contexts form the list
context algebra, ALst = (CLst, Lst, ◦, •, {−} , {∅}).

(d) Trees t ∈ Tree and tree contexts c ∈ C are defined as:

t ::= ∅
∣∣ a[t]

∣∣ t⊗ t
c ::= −

∣∣ a[c]
∣∣ t⊗ c ∣∣ c⊗ t

where a ∈ Σ ranges over unique node identifiers, and ⊗ is associative with identity ∅.
Context application • : CTree × Tree ⇀ Tree and composition ◦ : CTree × CTree ⇀ CTree

are defined in terms of substitution as:

c • t def= c[t/−] provided that c[t/−] ∈ Tree

c ◦ c′ def= c[c′/−] provided that c[c′/−] ∈ CTree.

Both operators are clearly non-commutative. Trees and tree contexts form the tree
context algebra, AT = (C,Tree, ◦, •, {−} , {∅}).
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(e) Let A1 = (C1,D1, ◦1, •1, I1,01) and A2 = (C2,D2, ◦2, •2, I2,0) be context algebras.
Then their direct product A1×A2 = (C1×C2,D1×D2, ◦1×◦2, •1×•2, I1×I2,01×02)
is also a context algebra†. For example, AScope×AH and AScope×AT combine variable
scopes with heaps and trees, respectively.

2.3. Axiomatic Semantics

We define an axiomatic semantics for LCmd as a program logic based on local Hoare
reasoning. This semantics treats the space of program states as a context algebra AState =
(CState,State, ◦, •, I,0), which is the product of the variable scope context algebra AScope,
from Example 1(b), with some data store context algebra AStore; i.e. AState = AScope ×
AStore. The semantics is parametrised by the choice of AStore and the axioms given for
basic commands. This gives us a fixed way of treating program variables, but allows for
a flexible choice of the structure in the data store. The treatment of variables as resource
(?) also allows us to avoid side conditions in our proof rules.

The Hoare logic judgements of our proof system make assertions about program state
and have the form Γ ` {P} C {Q}, where P,Q ∈ State are predicates, C ∈ LCmd is a
program, and Γ is a procedure specification environment. A procedure specification envi-
ronment associates procedure names with pairs of pre- and postconditions (parameterised
by the arguments and return values of the procedure respectively). The interpretation
of judegments is that, in the presence of procedures satisfying Γ, when executed from a
state satisfying P , the program C will either diverge or terminate in a state satisfying Q.

For simplicity, we use semantic predicates as assertions (so assertions describe sets of
states), rather than using logical formulae; this reflects the practice of Calcagno et al.
(2007b).

Definition 2.3 (Predicates). The set of state predicates P(State), ranged over by
P,Q,R, P ′, P1, . . . , is the set of sets of states. The set of state-context predicates P(CState),
ranged over by K,K ′,K1, . . . , is the set of sets of state contexts.

To express predicates, we use standard logical notation for conjunction, disjunction,
negation and quantification, which are interpreted with the usual semantics (intersec-
tion, union, etc.). We also lift operations on states and contexts to predicates: for in-
stance, a 7→ v denotes the predicate {a 7→ v}; ∃v. a 7→ v denotes {a 7→ v | v ∈ Val};
P ∗ Q denotes {d1 ∗ d2 | d1 ∈ P and d2 ∈ Q}; the separating application K • P denotes
{c • d | c ∈ K and d ∈ P}; and so on. We use a 7→ − as shorthand for ∃v. a 7→ v

and similarly for x ⇀⇁ −. We use
∏∗ to denote iterated ∗, and K −◦ K ′ to denote

{c1 | for all c2 ∈ K and c ∈ c1 ◦ c2, c ∈ K ′}. We use ≡ to indicate equality between pred-
icates, ⊆ to indicate that one predicate is contained with in another (the first entails the
second), and ∈ to indicate that a state or context belongs to a predicate.

Recall from our definition of LCmd 2.1 that procedures have the form −→r := f(−→x ).

† The product of partial functions is defined pointwise in the natural fashion.
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Definition 2.4 (Procedure Specification Environment). A procedure specification
f : P� Q comprises

— a procedure name f ∈ PName,
— a parametrised precondition P : Valn → P(State), and
— a parametrised postcondition Q : Valm → P(State),

where −→r := f(−→x ), |−→r | = n and |−→x | = m.
A procedure specification environment is a set of procedure specifications. The metavari-

ables Γ,Γ′, . . . range over procedure specification environments.

Notation.
In proof judgements, Γ,Γ′ stands for the union Γ ∪ Γ′.

We assume a denotational semantics for value expressions,

E J(·)K : Expr→ (Scope ⇀ Val),

and for boolean expressions,

B J(·)K : BExp→ (Scope ⇀ Bool).

where Bool
def= {T,F} is the standard two-valued set; T represents that a boolean ex-

pression holds for a given variable scope, and F represents that it does not. Note that
the semantics of an expression can be undefined on a given variable scope, for instance if
some variable in the expression is not assigned in the scope, or if evaluating the expression
requires division by zero.

To simplify the presentation of our inference rules we define a predicate-valued seman-
tics for boolean expressions. This semantics interprets a boolean expression as the set of
states in which that boolean expression holds.

Definition 2.5 (Predicate-Valued Semantics of Boolean Expressions). The predicate-
valued semantics of Boolean expressions, P J(·)K : BExp → P(State), is defined in terms
of their truth-valued semantics as follows:

P JBK = {(ρ, χ) | B JBK ρ = T} .

Since the semantics of expressions is partial, it is also convenient to define safety
predicates, which simply assert that the state permits the evaluation of a given expression.

Definition 2.6 (Safety Predicates). Given a value expression, E ∈ Expr, the expres-
sion safety predicate for E, vsafe(E), is defined as:

vsafe(E) = {(ρ, χ) | E JEK ρ is defined} .

Similarly, given a Boolean expression, B ∈ BExp, the expression safety predicate for B,
bsafe(B), is defined as:

bsafe(B) = {(ρ, χ) | B JBK ρ is defined} .

Finally, in order to define the axiomatic semantics, we need axioms for the basic com-
mands of the language.
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Assumption 1 (Axioms for Basic Commands). Assume a set of axioms for the
basic commands,

Ax J(·)K : Cmd→ P(P(State)× P(State)).

Definition 2.7 (Inference Rules). The Hoare logic rules for LCmd are given in Fig. 2.

The Axiom rule allows us to use the given specifications of our basic commands and
the Frame rule is the natural generalisation of the frame rule for separation algebras
to context algebras. The Cons, Disj, Skip, Seq, If and While rules are standard.
The Assgn, Local, PDef, PCall and PWk rules are standard, but adapted to our
treatment of variables as resource. The Assgn rule not only requires the resource x ⇀⇁ v,
but also the resource ρ containing the other variables used in E. For the Local rule, recall
that the predicate P specifies a set of pairs consisting of resource from DStore and variable
resource. The predicate (x ⇀⇁ − × IStore) • P therefore extends the variable component
with variable x of indeterminate initial value. If a local variable block is used to re-declare
a variable that is already in scope, the Frame rule must be used add the variable’s outer
scope after the Local rule is applied. For the PDef and PCall rules, the procedure
f has parametrised predicates P = λ−→x .P and Q = λ−→r .Q as its pre- and postcondition,
with P(−→v ) = P [−→v /−→x ] and Q(−→w ) = Q[−→w/−→r ]; the parameters carry the call and return
values of the procedure. The PWk rule simply allows for the procedure specification
environment to be weakened (i.e. more procedure specifications can be added).

The conjunction rule is notably absent from Fig. 2.:

I 6= ∅ for all i ∈ I, Γ ` {Pi} C {Qi}
Γ `

{∧
i∈I Pi

}
C
{∧

i∈I Qi
} Conj

.

We give conditions under which conjunction is admissible. To justify our ideas, we
first study an example where conjunction is not admissible. Consider the command
allocEither() that operates on a double-heap data store (AStore = AH × AH), allo-
cating a single cell in either of the two heaps. We can specify this command by:

Ax Jx := allocEither()K def={
((x ⇀⇁ −× emp× emp), (∃a. x ⇀⇁ a× a 7→ − × emp)),
((x ⇀⇁ −× emp× emp), (∃a. x ⇀⇁ a× emp× a 7→ −))

}
Note that the choice of heap in which the cell is allocated is not at the discretion of
the implementation, but rather at the discretion of the prover. The command exhibits
angelic nondeterminism: that is, it is possible to prove both that the command allocates
the cell in the left heap and that the command allocates the cell in the right heap. This
seems paradoxical, since the program must somehow correctly guess the prover’s choice.

Remark. One way of resolving this paradox is that, from the program’s perspective,
the two cases are actually the same and the distinction is only a logical abstraction. This
is exactly the case for the implementation of a double heap in a single heap that we
consider in §5.6.
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(P,Q) ∈ Ax JϕK
Γ ` {P} ϕ {Q} Axiom

Γ ` {P} C {Q}
Γ ` {K • P} C {K •Q} Frame

P ⊆ P ′ Γ ` {P ′} C {Q′} Q′ ⊆ Q
Γ ` {P} C {Q} Cons

for all i ∈ I, Γ ` {Pi} C {Qi}
Γ `

˘W
i∈I Pi

¯
C
˘W

i∈I Qi

¯ Disj

Γ ` {0} skip {0} Skip

Γ ` {P} C1 {R} Γ ` {R} C2 {Q}
Γ ` {P} C1; C2 {Q}

Seq

P ⊆ bsafe(B) Γ ` {P ∧ P JBK} C1 {Q} Γ ` {P ∧ ¬P JBK} C2 {Q}
Γ ` {P} if B then C1 else C2 {Q}

If

P ⊆ bsafe(B) Γ ` {P ∧ P JBK} C {P}
Γ ` {P} while B do C {P ∧ ¬P JBK} While

(x ⇀⇁ v ∗ ρ, χ) ∈ vsafe(E)

Γ ` {{(x ⇀⇁ v ∗ ρ, χ)}} x := E {{(x ⇀⇁ E JEK (x ⇀⇁ v ∗ ρ) ∗ ρ, χ)}} Assgn

P ∧ vsafe(x) ≡ ∅ Γ `
{(x ⇀⇁ −× IStore) • P}

C
{(x ⇀⇁ −× IStore) •Q}

Γ ` {P} local x in C {Q} Local

for all (fi : P� Q) ∈ Γ, Γ′,Γ `
{∃−→v .−→x i ⇀⇁

−→v ∗ −→r i ⇀⇁ −× P(−→v )}
Ci

{∃−→w .−→x i ⇀⇁ − ∗ −→r i ⇀⇁
−→w × Q(−→w )}

for all f : P� Q ∈ Γ, there exists i s.t. f = fi

for all f : P� Q ∈ Γ′, for all i, f 6= fi

Γ′,Γ ` {P} C {Q}
Γ′ ` {P} procs −→r1 := f1(−→x1) {C1}, . . . ,−→rk := fk(−→xk) {Ck} in C {Q}

PDef

{(−→r ⇀⇁ −→v ∗ ρ)} × Store ⊆ vsafe(
−→
E )

Γ, f : P� Q `

n
{(−→r ⇀⇁ −→v ∗ ρ)} × P

“−−−→
E JEK(−→r ⇀⇁ −→v ∗ ρ)

”o
call −→r := f(

−→
E )

{∃−→w . {(−→r ⇀⇁ −→w ∗ ρ)} × Q (−→w )}

PCall

Γ ` {P} C {Q}
Γ,Γ′ ` {P} C {Q} PWk

Fig. 2. Local Hoare logic rules for LCmd
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The conjunction rule is not compatible with angelic nondeterminism, as illustrated by
the following derivation:

{x ⇀⇁ −× emp× emp}
x := allocEither()

{∃a. x ⇀⇁ a× a 7→ − × emp}

Axiom {x ⇀⇁ −× emp× emp}
x := allocEither()

{∃a. x ⇀⇁ a× emp× a 7→ −}

Axiom

{x ⇀⇁ −× emp× emp} x := allocEither() {false} Conj

With Conj, it must be the case that allocEither diverges. Without Conj, we cannot
draw the same conclusion.

The following two conditions on basic command ϕ ∈ Cmd are sufficient to establish
that the command does not exhibit angelic nondeterminism:

— for all (P,Q), (P ′, Q′) ∈ Ax JϕK with (P,Q) 6= (P ′, Q′), P ∧ P ′ ≡ ∅; and
— the predicate

∨
{P | (P,Q) ∈ Ax JϕK} is precise‡.

These conditions imply that at most one axiom describes the behaviour of the command
from any given state, and hence the conjunction rule cannot be used to derive a stronger
postcondition for any of the basic commands. These conditions hold for all of the basic
module commands considered in this paper; they are not difficult to check. None of the
program constructions introduces angelic nondeterminism §. Conj is therefore admissible
for all of the modules considered here. Since nothing is gained by the inclusion of the
conjunction rule, its omission is justified. When we later discuss our reasoning techniques
in §5 and §6, we briefly consider the consequences of including the conjunction rule in
our theory.

3. Abstract Modules

An abstract module is a collection of operations on some abstract state model. For
example, a heap module typically provides operations that allocate and dispose blocks of
heap cells, and that fetch and mutate values stored in heap cells. Similarly, a list module
provides operations for adding, removing and querying list elements, while a tree module
provides operations for traversing the tree structure, and adding, removing and moving
nodes or subtrees.

The programming language that we introduced in the previous section can be instanti-
ated for such abstract modules by the choice of basic commands Cmd, data store context
algebra AStore = (CStore,Store, ◦, •, IStore,0Store), and axiomatisation of the basic com-
mands Ax J(·)K. Together, these three parameters constitute the notion of an abstract
module in our formalism.

Definition 3.1 (Abstract Module). An abstract module

A = (CmdA,AA,Ax J(·)KA)

‡ Predicate P is precise if, for every d ∈ State there is at most one c ∈ CState and d′ ∈ P such that
d = c • d′.
§ Proving this statement is rather involved, especially for recursion and looping. The proof invokes

Tarski’s fixed-point theorem and therefore requires a proof of monotonicity of programs.
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consists of:

— a set of basic commands, CmdA;
— a context algebra AA = (CA,DA, ◦A, •A, IA,0A); and
— an axiomatisation for the basic commands

Ax J(·)KA : CmdA → P(P(StateA)× P(StateA)),

where StateA = Scope× DA.

Notation.
We denote the language determined by the abstract module A as LA (this is in fact
LCmdA). We denote the axiomatic semantic judgement determined by the abstract module
A as `A. When the abstract module A can be inferred from context, the subscript A may
be dropped.

In this section, we consider a number of different abstract modules, including heaps
(the basis of separation logic (Ishtiaq and O’Hearn, 2001; Reynolds, 2002)), trees (the
original motivation for context logic (Calcagno, Gardner, and Zarfaty, 2005)) and lists.
A number of other abstract modules that are easily encoded in our formalism have been
considered in the literature, such as heap with free set (Raza and Gardner, 2009), a
fragment of the W3C DOM (Gardner, Smith, Wheelhouse, and Zarfaty, 2008), and tree
segments (Gardner and Wheelhouse, 2009).

3.1. Heap Module

The abstract heap module H def= (CmdH,AH,Ax J(·)KH) should be familiar to aficionados
of separation logic; its commands consist of heap allocation, disposal, mutation and
lookup. Heaps are modelled as finite partial functions from heap addresses (Addr) to
values (Val). The address set is assumed to be the positive integers, i.e. Addr = Z+, and
contained within the value set, i.e. Addr ⊆ Val. This enables program variables and heap
cells to hold pointers to other heap cells and arithmetic operations to be performed on
heap addresses (pointer arithmetic).

The constant value nil , the null reference, is used in situations where a heap reference
could occur, to indicate the absence of such a reference. It is therefore necessary that
nil /∈ Addr, so that it cannot be confused with a valid heap reference, and that nil ∈ Val,
so that it may be stored in variables, heap cells, etc.. In particular, we take nil = 0. The
set Addrnil

def= Addr ∪ {nil} consists of all valid references and the null reference.

Definition 3.2 (Heap Update Commands). The set of heap update commands
CmdH, ranged over by ϕ, is defined as follows:

ϕ ::= x := alloc(E)
∣∣ dispose(E1,E2)

∣∣ [E1] := E2

∣∣ x := [E]

where x ∈ Var ranges over variables and E,E1,E2 ∈ Expr range over value expressions.

The intuitive meaning of these commands, which will be realised by their axiomatic
semantics, is as follows:
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— x := alloc(E) allocates a contiguous block of cells in the heap of length E, returning
the address of the first cell in x ;

— dispose(E1,E2) deallocates a contiguous block of cells in the heap at address E1 of
length E2;

— [E1] := E2 stores the value E2 in the heap cell at address E1; and
— x := [E] loads the contents of the heap cell at address E1 into x .

The data model for heaps, which we have already seen in Example 1(a), represents
heaps as, effectively, partial functions from heap addresses to values. In this model,
heaps are interpreted as resources: the cells that have values specified in the heap are
the resources available to the program. Loads and stores can only be performed on heap
cells that are available to the program; allocation makes new heap cells available; and
deallocation makes available heap cells unavailable.

Definition 3.3 (Heap Context Algebra). The heap context algebra is:

AH
def= (Heap,Heap, ∗, ∗, {emp} , {emp})

as given in Example 1(a).

Definition 3.4 (Heap Axiomatisation).
The heap axiomatisation, Ax J(·)KH : CmdH → P(P(Scope × Heap) × P(Scope × Heap))
is defined as follows:

Ax Jx := alloc(E)KH
def=

 (x ⇀⇁ v ∗ ρ× emp ∧ w ≥ 1) ,(
∃a. x ⇀⇁ a ∗ ρ×
a 7→ − ∗ · · · ∗ (a+ w) 7→ −

)  ∣∣∣∣∣∣ w = E JEK (x ⇀⇁ v ∗ ρ)


Ax Jdispose(E1,E2)KH

def={(
(ρ× a 7→ − ∗ · · · ∗ (a+ v) 7→ −) , (ρ× emp)

) ∣∣∣∣ a = E JE1K ρ and
v = E JE2K ρ

}

Ax J[E1] := E2KH
def= {(

(ρ× a 7→ −) , (ρ× a 7→ v)
) ∣∣ a = E JE1K ρ and v = E JE2K ρ

}
Ax Jx := [E]KH

def= {(
(x ⇀⇁ v ∗ ρ× a 7→ w) , (x ⇀⇁ w ∗ ρ× a 7→ w)

) ∣∣ a = E JEK ρ
}

3.2. Tree Module

The abstract tree module T def= (CmdT,AT,Ax J(·)KT) should be familiar to adherents of
context logic; its commands consist of node-relative traversal, node creation and subtree
deletion. The tree model consists of uniquely-labelled trees, where each label may only
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occur once in any given tree or context. This ensures that nodes in a tree are uniquely
addressable by their labels. It is therefore assumed that the set of tree labels, Σ, is
contained with in the value set, Val, i.e. Σ ⊆ Val. It is also assumed that Addr ⊆ Σ, in
order that heap addresses can be used to implement node addresses.

Definition 3.5 (Tree Update Commands). The set of tree update commands CmdT,
ranged over by ϕ, is defined as follows:

ϕ ::= x := getUp(E)
∣∣ x := getLeft(E)

∣∣ x := getRight(E)∣∣ x := getFirst(E)
∣∣ x := getLast(E)∣∣ newNodeAfter(E)
∣∣ deleteTree(E)

where x ∈ Var ranges over variables and E ∈ Expr ranges over value expressions.

The intuitive meaning of these commands is as follows:

— getUp(E), getLeft(E) and getRight(E) retrieve, respectively, the identifier of the
immediate parent, left sibling and right sibling (if any) of the node identified by E;

— getFirst(E) and getLast(E) retrieve, respectively, the identifiers of the first and last
children (if any) of the node identified by E;

— newNodeAfter(E) creates a new node with some fresh identifier and no children, which
inserted into the tree as the right sibling of the node identified by E; and

— deleteTree(E) deletes the entire subtree rooted at the node identified by E.

The data model for trees, which we have already seen in Example 1(d), represents trees
as uniquely-labelled abstract forests. These trees are divisible into contexts and subtrees,
with subtrees always being trees in their own right. We thus give the axiomatisation of
the tree update commands in terms of such complete trees, although they may actually
be subtrees of bigger trees. (Gardner and Wheelhouse (2009) specify tree commands in
terms of tree segments, which are fragments of trees that need not be trees in their own
right. We work with subtrees here for simplicity of exposition.)

Definition 3.6 (Uniquely-Labelled Tree Context Algebra). The tree context al-
gebra is:

AT
def= (CTree,Tree, ◦, •, {−} , {0})

as given in Example 1(d).

Definition 3.7 (Tree Axiomatisation).
The tree axiomatisation, Ax J(·)KT : CmdT → P(P(Scope × Tree) × P(Scope × Tree)) is
defined as follows:

Ax Jx := getUp(E)KT
def={(
(x ⇀⇁ v ∗ ρ× a[t1 ⊗ b[t2]⊗ t3]) ,
(x ⇀⇁ a ∗ ρ× a[t1 ⊗ b[t2]⊗ t3])

) ∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = b
}
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Ax Jx := getLeft(E)KT
def={(

(x ⇀⇁ v ∗ ρ× a[t1]⊗ b[t2]) ,
(x ⇀⇁ a ∗ ρ× a[t1]⊗ b[t2])

) ∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = b
}
∪{(

(x ⇀⇁ v ∗ ρ× a[b[t1]⊗ t2]) ,
(x ⇀⇁ nil ∗ ρ× a[b[t1]⊗ t2])

) ∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = b
}

Ax Jx := getRight(E)KT
def={(

(x ⇀⇁ v ∗ ρ× b[t1]⊗ a[t2]) ,
(x ⇀⇁ a ∗ ρ× b[t1]⊗ a[t2])

) ∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = b
}
∪{(

(x ⇀⇁ v ∗ ρ× a[t1 ⊗ b[t2]]) ,
(x ⇀⇁ nil ∗ ρ× a[t1 ⊗ b[t2]])

) ∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = b
}

Ax Jx := getFirst(E)KT
def={(

(x ⇀⇁ v ∗ ρ× a[b[t1]⊗ t2]) ,
(x ⇀⇁ b ∗ ρ× a[b[t1]⊗ t2])

) ∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = a
}
∪{(

(x ⇀⇁ v ∗ ρ× a[0]) ,
(x ⇀⇁ nil ∗ ρ× a[0])

) ∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = a
}

Ax Jx := getLast(E)KT
def={(

(x ⇀⇁ v ∗ ρ× a[t1 ⊗ b[t2]]) ,
(x ⇀⇁ b ∗ ρ× a[t1 ⊗ b[t2]])

) ∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = a
}
∪{(

(x ⇀⇁ v ∗ ρ× a[0]) ,
(x ⇀⇁ nil ∗ ρ× a[0])

) ∣∣∣∣ E JEK (x ⇀⇁ v ∗ ρ) = a
}

Ax JnewNodeAfter(E)KT
def={(

(ρ× a[t]) , (∃b. ρ× a[t]× b[0])
) ∣∣ E JEK (x ⇀⇁ v ∗ ρ) = a

}
Ax JdeleteTree(E)KT

def=
{(

(ρ× a[t]) , (ρ× 0)
) ∣∣ E JEK (x ⇀⇁ v ∗ ρ) = a

}

3.3. List Module

This list module L def= (CmdL,AL,Ax J(·)KL) is an example of a somewhat more exotic
abstract module. The module provides an addressable set of lists of unique elements,
called a list store. Each list can be manipulated independently in a number of ways, new
lists can be constructed and existing lists can be deleted.
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Definition 3.8 (List Update Commands). The set of list commands CmdL, ranged
over by ϕ, is defined as follows:

ϕ ::= x := E.getHead()
∣∣ x := E.getTail()∣∣ x := E1.getNext(E2)
∣∣ x := E1.getPrev(E2)∣∣ x := E.pop()

∣∣ E1.push(E2)∣∣ E1.remove(E2)
∣∣ E1.insert(E2,E3)∣∣ x := newList()
∣∣ deleteList(E)

where x ∈ Var ranges over variables and E,E1, . . . ∈ Expr range over value expressions.

The intuitive meaning of these commands is as follows:

— E.getHead() and E.getTail() retrieve, respectively, the first and last elements (if
any) of the list identified by E;

— E1.getNext(E2) and E1.getPrev(E2) retrieve, respectively, the elements (if any) fol-
lowing and preceding the element E2 in the list identified by E1 (if E2 is not in the
list, the behaviour of these commands is undefined);

— E.pop() retrieves and removes the first element of the list identified by E (if the list
is empty, the behaviour is undefined);

— E1.push(E2) adds the element E2 to the start of the list identified by E1;
— E1.remove(E2) removes the element E2 from the list identified by E1 (if E2 is not in

the list, the behaviour is undefined);
— E1.insert(E2,E3) inserts the element E3 immediately following E2 in the list identi-

fied by E1 (if E2 is not in the list, the behaviour is undefined);
— newList() creates a new list, initially empty, and returns its address; and
— deleteList(E) deletes the list identified by E.

We require that elements occur at most once in any given list. Thus getNext, getPrevious
and insert are unambiguous and the behaviour of push and insert is undefined if they
are used to insert elements that are already present in the list.

The list context algebra of Example 1(c) is not adequate as a data model for the list
module, since it only models a single list. Instead, we define a list-store context algebra,
which models multiple independent lists. List stores are similar to heaps in the sense that
they are finite maps from addresses to values, except that now the values have intrinsic
structure: they are lists of unique elements.

Each list in the store is a finite sequence of values, each of which occurs only once in
the list. Lists may be extended by applying contexts, for instance, v1 · − · v2 • w1 · w2 =
v1 ·w1 ·w2 ·v2. However, lists may also be completed, which means they cannot be extended
by applying a context. Completed lists are indicated by square brackets, and the result
of applying a context is undefined. For example, v1 · − · v2 • [w1 · w2] is undefined.

It is necessary to deal with complete lists in order to specify a number of the update
and lookup commands on lists. For example, getFirst returns the first item in a list.
Given the partial list v1 · v2, it is not clear that v1 is the first element of the list. Indeed,
in the context w · − it is certainly not the first element. However, given the completed
list [v1 · v2] it is completely certain that v1 is the first element.
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Remark. It is quite possible to define list stores to allow the list to be open at one end
but not the other. For example, [v1 would allow additional list elements to be added by
context application to the right of v1, but not to the left. We have chosen not to take
this approach in order to avoid further complicating an already-complex definition.

Recall the definition of lists and list contexts from Example 1(c):

Definition 3.9 (List and Contexts). The set of lists Lst, ranged over by l , l1, . . . and
the set of list contexts CLst, ranged over by lc, lc1, . . . , are defined inductively as follows:

l ::= ∅
∣∣ v ∣∣ l1 · l2

lc ::= −
∣∣ lc · l

∣∣ l · lc

where values v ∈ Val are taken to occur uniquely in each list or list context and · is taken
to be associative with identity ∅.

We defined list stores and their contexts in terms lists and list contexts.

Definition 3.10 (List Stores and Contexts). The set of list stores LStore, ranged
over by ls, ls1, . . . and the set of list store contexts CLStore, ranged over by lsc, lsc1, . . . ,
are defined inductively as follows:

ls ::= emp
∣∣ a Z⇒ l

∣∣ a Z⇒ [l ]
∣∣ ls1 ∗ ls2

lsc ::= emp
∣∣ a Z⇒ l

∣∣ a Z⇒ [l ]
∣∣ a Z⇒ lc

∣∣ a Z⇒ [lc]
∣∣ lsc1 ∗ lsc2

where addresses a ∈ Addr are taken to occur uniquely in each list store or list store
context and ∗ is taken to be associative and commutative with identity emp.

Since list stores are structured like heaps we need a notion of context application that
will allow list stores to be split in the same fashion as heaps, for instance

(a1 Z⇒ v1 · v2 · v3) ∗ (a2 Z⇒ w1 · v1) = (a1 Z⇒ v1 · v2 · v3) • (a2 Z⇒ w1 · v1).

We also want context application to allow splitting within lists themselves, as was possible
with the list context algebra, so, for example

a1 Z⇒ v1 · v2 · v3 = a1 Z⇒ v1 · − · v3 • a1 Z⇒ v2.

Since such applications can be nested, the associativity requirements on context algebras
mean that it must be possible to split within multiple lists at the same time, as in

a1 Z⇒ v1 · v2 · v3 ∗ a2 Z⇒ w1 · v1
= a1 Z⇒ v1 · − · v3 • (a1 Z⇒ v2 ∗ a2 Z⇒ w1 · v1)

= a1 Z⇒ v1 · − · v3 • (a2 Z⇒ − · v1 • (a1 Z⇒ v2 ∗ a2 Z⇒ w1))

= (a1 Z⇒ v1 · − · v3 ◦ a2 Z⇒ − · v1) • (a1 Z⇒ v2 ∗ a2 Z⇒ w1)

= (a1 Z⇒ v1 · − · v3 ∗ a2 Z⇒ − · v1) • (a1 Z⇒ v2 ∗ a2 Z⇒ w1).

(In a sense, the context a1 Z⇒ v1 · − · v3 ∗ a2 Z⇒ − · v1 above can be seen as a multi-holed
context — after all, it certainly has multiple holes! Yet in applying it to a list store, both
of the holes must be filled up at the same time. We may see this as the context having
multiple ‘list holes’ but a single ‘list store hole’.)
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Completed lists cannot be extended by application, but they can be split, as in

a2 Z⇒ [w1 · w2] = a2 Z⇒ [w1 · −] • a2 Z⇒ w2.

All of these properties are embodied in the definition of the application and composition
operators.

Definition 3.11 (Application and Composition). The application of list store con-
texts to list stores • : CLStore × LStore ⇀ LStore is defined inductively by:

emp • ls def= ls

(lsc ∗ a Z⇒ l) • ls def= (lsc • ls) ∗ a Z⇒ l

(lsc ∗ a Z⇒ [l ]) • ls def= (lsc • ls) ∗ a Z⇒ [l ]

(lsc ∗ a Z⇒ lc) • (ls ∗ a Z⇒ l) def= (lsc • ls) ∗ a Z⇒ lc[l/−]

(lsc ∗ a Z⇒ [lc]) • (ls ∗ a Z⇒ l) def= (lsc • ls) ∗ a Z⇒ [lc[l/−]]

where lc[l/−] denotes the substitution of l for the context hole in lc. The result of
the application is undefined when either the right-hand side is badly formed or no case
applies.

The composition of list store contexts ◦ : CLStore×CLStore ⇀ CLStore is defined inductively
by:

emp ◦ lsc′ def= lsc′

(lsc ∗ a Z⇒ l) ◦ lsc′ def= (lsc ◦ lsc′) ∗ a Z⇒ l

(lsc ∗ a Z⇒ [l ]) ◦ lsc′ def= (lsc ◦ lsc′) ∗ a Z⇒ [l ]

(lsc ∗ a Z⇒ lc) ◦ lsc′ def=


(lsc ◦ lsc′) ∗ a Z⇒ lc if a /∈ dom(lsc′)

(lsc ◦ lsc′′) ∗ a Z⇒ lc[l/−] if lsc′ = lsc′′ ∗ a Z⇒ l

(lsc ◦ lsc′′) ∗ a Z⇒ lc[lc′/−] if lsc′ = lsc′′ ∗ a Z⇒ lc′

(lsc ∗ a Z⇒ [lc]) ◦ lsc′ def=


(lsc ◦ lsc′) ∗ a Z⇒ [lc] if a /∈ dom(lsc′)

(lsc ◦ lsc′′) ∗ a Z⇒ [lc[l/−]] if lsc′ = lsc′′ ∗ a Z⇒ l

(lsc ◦ lsc′′) ∗ a Z⇒
[
lc[lc′/−]

]
if lsc′ = lsc′′ ∗ a Z⇒ lc′.

Again, the result of the composition is undefined when either the right-hand side is badly
formed or no case applies.

Definition 3.12 (List-Store Context Algebra). The list-store context algebra:

AL
def= (CLStore, LStore, ◦, •, {emp} , {emp})

is given by the above definitions.

Definition 3.13 (List Axiomatisation).
The list axiomatisation, Ax J(·)KL : CmdL → P(P(Scope× LStore)× P(Scope× LStore))
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is defined as follows:

Ax Jx := E.getHead()KL
def={(

(x ⇀⇁ v ∗ ρ× a Z⇒ [w · l ]) ,
(x ⇀⇁ w ∗ ρ× a Z⇒ [w · l ])

) ∣∣∣∣ a = E JEK (x ⇀⇁ v ∗ ρ)
}
∪{(

(x ⇀⇁ v ∗ ρ× a Z⇒ [∅]) ,
(x ⇀⇁ nil ∗ ρ× a Z⇒ [∅])

) ∣∣∣∣ a = E JEK (x ⇀⇁ v ∗ ρ)
}

Ax Jx := E.getTail()KL
def={(

(x ⇀⇁ v ∗ ρ× a Z⇒ [l · w]) ,
(x ⇀⇁ w ∗ ρ× a Z⇒ [l · w])

) ∣∣∣∣ a = E JEK (x ⇀⇁ v ∗ ρ)
}
∪{(

(x ⇀⇁ v ∗ ρ× a Z⇒ [∅]) ,
(x ⇀⇁ nil ∗ ρ× a Z⇒ [∅])

) ∣∣∣∣ a = E JEK (x ⇀⇁ v ∗ ρ)
}

Ax Jx := E1.getNext(E2)KL
def={(

(x ⇀⇁ v ∗ ρ× a Z⇒ w · u) ,
(x ⇀⇁ u ∗ ρ× a Z⇒ w · u)

) ∣∣∣∣ a = E JE1K (x ⇀⇁ v ∗ ρ) and
w = E JE2K (x ⇀⇁ v ∗ ρ)

}
∪{(

(x ⇀⇁ v ∗ ρ× a Z⇒ [l · w]) ,
(x ⇀⇁ nil ∗ ρ× a Z⇒ [l · w])

) ∣∣∣∣ a = E JE1K (x ⇀⇁ v ∗ ρ) and
w = E JE2K (x ⇀⇁ v ∗ ρ)

}

Ax Jx := E1.getPrev(E2)KL
def={(

(x ⇀⇁ v ∗ ρ× a Z⇒ u · w) ,
(x ⇀⇁ u ∗ ρ× a Z⇒ u · w)

) ∣∣∣∣ a = E JE1K (x ⇀⇁ v ∗ ρ) and
w = E JE2K (x ⇀⇁ v ∗ ρ)

}
∪{(

(x ⇀⇁ v ∗ ρ× a Z⇒ [w · l ]) ,
(x ⇀⇁ nil ∗ ρ× a Z⇒ [w · l ])

) ∣∣∣∣ a = E JE1K (x ⇀⇁ v ∗ ρ) and
w = E JE2K (x ⇀⇁ v ∗ ρ)

}

Ax Jx := E.pop()KL
def= {(

(x ⇀⇁ v ∗ ρ× a Z⇒ [w · l ]) ,
(x ⇀⇁ w ∗ ρ× a Z⇒ [l ])

) ∣∣∣∣ a = E JEK (x ⇀⇁ v ∗ ρ)
}

Ax JE1.push(E2)KL
def={(

(ρ× a Z⇒ [l ] ∧ v /∈ l) , (ρ× a Z⇒ [v · l ])
) ∣∣∣∣ a = E JE1K ρ and

v = E JE2K ρ

}

Ax JE1.remove(E2)KL
def={(

(ρ× a Z⇒ v) , (ρ× a Z⇒ ∅)
) ∣∣ a = E JE1K ρ and v = E JE2K ρ

}
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Ax JE1.insert(E2,E3)KL
def=

(
(ρ× a Z⇒ [l1 · v · l2] ∧ w /∈ l1 · v · l2) ,

(ρ× a Z⇒ [l1 · v · w · l2])

) ∣∣∣∣∣∣
a = E JE1K ρ and
v = E JE2K ρ and

w = E JE3K ρ


Ax Jx := newList()KL

def=
{(

(x ⇀⇁ −× emp) , (∃a. x ⇀⇁ a× a Z⇒ [∅])
)}

Ax JdeleteList(E)KL
def=
{(

(ρ× a Z⇒ [l ]) , (ρ× emp)
) ∣∣ a = E JEK ρ

}
3.4. Combining Abstract Modules

It is often useful when programming to be able to make use of several modules. Just
as it is natural to combine context algebras, as in Example 1(e), it is also natural to
have a mechanism for combining abstract modules. The most intuitive approach is to
allow arbitrary interleavings of their commands, whilst interpreting these commands
over the product of their data-store context algebras. If the modules want to share any
information, this must be done through the common variable store.

Definition 3.14 (Abstract Module Combination). Given abstract modules A1 =
(CmdA1 ,AA1 ,Ax J(·)KA1

) and A2 = (CmdA2 ,AA2 ,Ax J(·)KA2
), their combination

A1 + A2
def= (CmdA1 ⊕ CmdA2 ,AA1 ×AA2 ,Ax J(·)KA1+A2

)

is an abstract module, where

— CmdA1 ⊕CmdA2

def= (CmdA1 × {1})∪ (CmdA2 × {2}) is the discriminated union of the
command sets,

— AA1 ×AA2 is the direct product of the context algebras, and
— Ax J(·)KA1+A2

: CmdA1 ⊕CmdA2 → P(P(Scope×DA1 ×DA2)×P(Scope×DA1 ×DA2))
is defined as

Ax J(ϕ, 1)KA1+A2

def=
{

(π1(P ), π1(Q)
∣∣ (P,Q) ∈ Ax JϕKA1

}
Ax J(ϕ, 2)KA1+A2

def=
{

(π2(P ), π2(Q)
∣∣ (P,Q) ∈ Ax JϕKA2

}
where

π1(P ) def= {(ρ, χ1, o2) | (ρ, χ1) ∈ P and o2 ∈ 02}
π2(P ) def= {(ρ, o1, χ2) | (ρ, χ2) ∈ P and o1 ∈ 01} .

Notation.
When the command sets CmdA1 and CmdA2 are disjoint, we will drop the tags when
referring to the commands in the combined abstract module. When the tags are necessary,
we will indicate them with an appropriately place subscript.

In §5.5 we shall use a combination of the heap module H and the list module L to
provide am implementation of the tree module T.
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4. Module Translations

We now define what it means to correctly implement one module in terms of another,
using module translations.

Definition 4.1 (Module Translation). A module translation τ : A→ B from abstract
module A to abstract module B comprises:

— an abstraction relation ατ ⊆ DB × DA, and
— a substitutive implementation function J(·)Kτ : LA → LB which uniformly substitutes

each basic command of CmdA with a call to a procedure written in LB.

Notation.
The abstraction relation ατ is lifted to a predicate translation J(·)Kτ : P(StateA) →
P(StateB) as follows:

JP K = {(ρ, χB) | there exists χA s.t. (ρ, χA) ∈ P and χB ατ χA} .

When the translation τ is implicit from context, the subscripts on the abstraction relation,
implementation function and predicate translation may be dropped.

In the context of a translation τ : A→ B, A is called the abstract or high-level module
and B is called the concrete or low-level module. (Of course, there is no reason why a
module should not be abstract with respect to one translation and concrete with respect
to another, or even both the abstract and concrete module with respect to a single
translation.)

Definition 4.2 (Sound Module Translation). A module translation τ : A → B is
said to be sound, if for all P,Q ∈ P(StateA) and C ∈ LA,

`A {P} C {Q} =⇒ `B {JP Kτ} JCKτ {JQKτ} .

Intuitively, a sound module translation appears to be a reasonable correctness condition
for a module implementation: everything that can be proved about the abstract module
also holds for its implementation. There are, however, a few caveats.

Firstly, since we have elected to work with partial correctness Hoare triples, it is
acceptable for an implementation to simply loop forever. If termination guarantees are
required, they could either be made separately or a logic based on total correctness
could be used. We have chosen to work with partial correctness for simplicity and on the
basis that partial correctness is generally used in the separation logic and context logic
literature (Ishtiaq and O’Hearn, 2001; Reynolds, 2002; Calcagno et al., 2005).

Secondly, it is possible for the abstraction relation to lose information. For instance, if
all predicates were unsatisfiable under translation then it would be possible to soundly
implement every abstract command with skip; such an implementation is useless. One
way of mitigating this would be to consider a set of initial predicates that must be
satisfiable under translation. A triple whose precondition is such an initial predicate is
then meaningful under translation, since it does not hold vacuously. A more stringent
approach would be to require the abstraction relation ατ to be surjective, and therefore
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every satisfiable predicate to be satisfiable under translation. This condition is, however,
not met by one of the natural implementations considered here.

In this section, we present two techniques for constructing sound module translations:
locality-preserving translations and locality-breaking translations. Locality-preserving
translations, discussed in §5, closely preserve the structure of the abstract module’s con-
text algebra through the translation, which leads to an elegant inductive proof trans-
formation from the abstract to the concrete. In particular, context application at the
abstract level corresponds to context application at the concrete level, and so the ab-
stract frame rule is transformed to the concrete frame rule. Locality-breaking translations,
discussed in §6, on the other hand do not necessarily preserve the structure of the ab-
stract module’s context algebra. Even so, certain properties of the proof theory can be
used to simplify the problem of establishing the soundness of such a translation.

4.1. Modularity

An important property of module translations is that they are composable: given trans-
lations τ1 : A1 → A2 and τ2 : A2 → A3, the translation τ2◦τ1 : A1 → A3 can be defined in
the natural fashion. If its constituent translations are sound then so is the composition.
Therefore, it is possible to construct module translations stepwise.

A translation τ : A1 → A2 can be naturally lifted to a translation τ + B : A1 + B →
A2 + B, for any module B. If τ is a sound translation, we might also expect τ + B to
be sound. However, it is not obvious that this is the case in general. The techniques for
constructing sound translations in this paper do, however, admit such a lifting. This is
because they transform high-level proofs to low-level proofs in a fashion that preserves
any additional module component. Being able to combine translations for independent
modules means that these techniques are modular.

5. Locality-Preserving Translations

Sometimes, there is a close correspondence between the locality exhibited by a high-level
module and the locality exhibited by the low-level implementation of the module. In this
section, we expand on this intuition and formalise the concept of a locality-preserving
translation. In §5.1, we establish that locality-preserving translations give sound module
translations, and in §5.4, §5.5 and §5.6 we give locality-preserving translations τ1 : T→ H,
τ2 : T→ H + L and τ3 : H + H→ H.

So what exactly does it mean for there to be a correspondence between locality at
the high level and locality at the low level? Consider Fig. 3, which depicts a typical tree
from the tree module T (a), together with possible representations of that tree in the
heap module H (b), and in the combined heap-and-list module H + L (c). In Fig. 3(b),
each tree node is represented by a memory block comprising four pointer fields (depicted
by a circle with outgoing arrows) which record the addresses of the memory blocks
representing the left sibling, parent, right sibling and first child. Where there is no such
node (for example, when a node has no children) the pointer field holds the nil value
(depicted by the absence of an arrow). In Fig. 3(c), each tree node is represented by a
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(a) (b) (c)

Fig. 3. An abstract tree from T (a), and representations of the tree in H (b), and
in H + L (c).

memory block that comprises a pointer to the node’s parent and a pointer to the child
list of the node. The child list (depicted by a box with dots for each value in the list) is
a list of pointers to the node’s children.

What these examples exhibit is a simple inductive transformation from the abstract
data structure to its concrete representations. This suggests the possibility of a simple
inductive transformation from high-level proofs to low-level proofs: in particular, it should
be possible to transform high-level frames into low-level frames. Such a transformation
may well be said to preserve locality.

Essential to constructing such a transformation is that the concrete representation
of abstract data preserves the abstract application structure. In particular, if we split
the abstract data structure into a context and subdata, its concrete representation can
also be split into the representations of this context and subdata. In Fig. 3, the dashed
line indicates such a splitting of the abstract tree, and the corresponding splittings of
the two representations. In general, for all contexts c and abstract data structures χ, we
would like their intuitive representations, denoted 〈〈c〉〉 and 〈〈χ〉〉, to satisfy the application
preservation property 〈〈c • χ〉〉 ≡ 〈〈c〉〉 • 〈〈χ〉〉.

The reality is, however, more subtle than this intuition, since the concrete representa-
tions of context and data must mesh together correctly. In the example representations
we have considered, this means that the pointers between the context and subdata must
link up correctly. Thus, while an abstract context is agnostic to the data that is placed
in its hole, the representation of the context needs to “know” some information about
the representation of the data, and vice-versa. Thus the representations of context and
data need to be parametrised by interfaces which record this “knowledge” that the con-
text and data need about each other. Specifically, the representation of abstract data
structure χ is given by the concrete predicate 〈〈χ〉〉I , and the representation of abstract
context c is given by the concrete predicate 〈〈c〉〉II′ . The context representation requires
two interfaces: the I ′ between it and the data in its hole and the I between it and its
own surrounding context. Taking interfaces into account, the application preservation
property is now, essentially,

〈〈c • χ〉〉I ≡ ∃I ′. 〈〈c〉〉II′ • 〈〈χ〉〉I
′
.
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The interface is divided into two parts: the knowledge that a context representation
needs about the data to be put in its hole is called the in-interface, while the knowledge
that a data representation needs about its surrounding context is called the out-interface.
In Fig. 3 the dashed lines depict a splitting of the abstract tree, and its representations,
into a context and a subtree. In Fig. 3(b), the in-interface consists of the addresses of the
left- and right-most nodes at the top level of the subtree, while the out-interface consists
of the addresses of the nodes immediately left, above and to the right of the context hole.
In Fig. 3(c), the in-interface consists of the addresses of all of the nodes at the top level
of the subtree, while the out-interface consists of the address of the parent node of the
context hole. Typically, as in these examples, the interfaces are a collection of pointers,
which are identified in the diagrams by the arrows that cross the dividing line between
context and data. The direction of the arrow determines whether it belongs to the in- or
out-interface.

Having established an application-preserving representation of data, we aim to trans-
form high-level proofs about an abstract program into corresponding low-level proofs
about its implementation, by simply replacing the high-level predicates with their low-
level representations. Most of the proof rules should transform simply to their low-level
counterparts; application preservation should allow us to transform the Frame rule; and
to deal with Axiom we simply need to prove that the implementations of the basic com-
mands satisfy the low-level representations of their specifications. However, consider the
operation of disposing the subtree indicated in Fig. 3. At the abstract level, it is clear
that the resource required to run the command is just the subtree that is to be deleted.
This is reflected in the axiom:

Ax JdeleteTree(E)KT
def=
{(

(ρ× a[t]) , (ρ× 0)
) ∣∣ E JEK (x ⇀⇁ v ∗ ρ) = a

}
Yet in both implementations, something more than the representation of the subtree is
required: for the heap implementation in Fig. 3(b), the pointers from the context into the
deleted subtree must be updated; for the heap-and-list implementation in Fig. 3(c), the
pointers to the subtree’s top-level nodes must be removed from their parent’s child list.
In both cases, the low-level footprint of dispose is larger than the intuitive representation.
The axiom for dispose cannot therefore simply be translated.

We could decide that our chosen representation is unsuitable. In our two tree imple-
mentations however, the representations seem pretty intuitive. Instead, we demonstrate
that it is possible to repair our existing approach. We do this by introducing the con-
cept of crust, a predicate that corresponds to the minimal extra resource (taken from
the surrounding context) that is required by the command implementations. In Fig. 3,
the crust for each subtree representation is depicted by the shaded portions of the con-
text representation. For the heap implementation in Fig. 3(b), this is the nodes (in the
example, the parent and right sibling) that have pointers into the subtree; for the heap-
and-list implementation in Fig. 3(c), this is the parent node, its child list and its other
children. In general, the crust is represented by the predicate eFI , parametrised by an
interface I and some additional parameter F that together fully determine it. (Since the
crust corresponds to some portion of the surrounding context, some information about
that context is contained within the crust; F is the part of this information that is not
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already provided by I. In the heap implementation of trees, for example, F provides all
the values of pointers in the nodes belonging to the crust which are not in I.)

We must now ensure that the axiom correctness property holds with this extra crust.
This means we must check that the implementations of the basic commands satisfy the
representations of their specifications, with the addition of crust. Loosely:

`
{
∃in.eFin,out • 〈〈P 〉〉in,out

}
JϕK

{
∃in.eFin,out • 〈〈Q〉〉in,out

}
for every (P,Q) ∈ Ax JϕK.

With crust now added to the representation of data, the application preservation prop-
erty no longer immediately provides a way to translate high-level frames into low-level
frames. If we simply took the low-level frame to be the representation of the high-level
frame plus its outer crust, this would duplicate the data’s crust. This inner crust must
therefore be removed from the frame before it is applied. For example, consider again
disposing the subtree indicated in Fig. 3. In the heap implementation of Fig. 3(b), the
command operates on the representation of the subtree (as indicated by the dashed line)
plus the crust (as indicated by the shaded nodes). If the context is added by frame at
the high-level, what is added at the low-level is the representation of the context (and
its outer crust) minus the inner crust (the shaded nodes). The possibility of removing
the inner crust in this way is established by the crust inclusion property, which (in part)
states that the representation of a context together with its outer crust contains the inner
crust. Loosely: (

∃in ′.eFin′,out′ ◦ 〈〈c〉〉
in′,out′

I

)
≡ K ◦ eF

′

I .

This crust inclusion property enables us to transform a high-level frame into a low-
level frame, and hence construct a locality-preserving module translation. We introduce
crust to deal with the fact that the footprint of the low-level operations overlaps with
the representation of the context. Hence we say that such a module translation provides
a fiction of disjointness.

Having fleshed out the intuition behind locality-preserving translations, we now intro-
duce their formal definition. We first define the concept of pre-locality-preserving transla-
tions, which have the appropriate form, and then restrict locality-preserving translations
to being those that exhibit the properties of application preservation, crust inclusion and
axiom correctness. We prove a general result that locality-preserving translations are
sound module translations.

Definition 5.1 (Pre-Locality-Preserving Translation). A pre-locality-preserving
translation τ : A→ B comprises:

— a set of in-interfaces Iin and a set of out-interfaces Iout, whose Cartesian product
constitutes the set of interfaces I = Iin × Iout;

— a data representation function 〈〈(·)〉〉(·) : DA × I → P(DB);
— a context representation function 〈〈(·)〉〉(·)(·) : CA × I × I → P(CB);
— a set of crust parameters F ;
— a crust predicate eFI ∈ P(CB), parametrised by interface I ∈ I and crust parameter

F ∈ F ; and
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— a substitutive implementation function J(·)Kτ : LA → LB.

We construct a module translation from a pre-locality-preserving translation by defin-
ing the abstraction relation in terms of the data representation function and the crust
predicate. For any given out ∈ Iout and F ∈ F , the abstraction relation α is defined to
be

α =
{

(χB, χA)
∣∣ χB ∈ ∃in.eFin,out • 〈〈χA〉〉in,out

}
.

Frequently, there will be a natural choice of out and F , but in general any choice is
permissible.

We define an intermediate predicate translation (|(·)|)(·), which is closely related to the
predicate translation J(·)K, except that it is explicitly parametrised by the choice of out
and F .

Definition 5.2 (Intermediate Predicate Translation). Given a pre-locality-preserving
translation, the intermediate predicate translation function

(|(·)|)(·) : P(StateA)× (Iout ×F)→ P(StateB)

is defined as:

(|P |)out,F def=
∨

(ρ,χA)∈P

{ρ} ×
(
∃in.eFin,out • 〈〈χA〉〉in,out

)
.

For a module translation defined by a pre-locality-preserving translation with respect
to out ∈ Iout and F ∈ F , the predicate translation can be expressed simply in terms of
the intermediate predicate translation: JP K = (|P |)out,F .

Pre-locality-preserving translations do not embody the intuition of what it means for
a module translation to soundly preserve locality. This is reserved for locality-preserving
translations, which require the following three properties.

Property 1 (Application Preservation). Context application is preserved by the
representation functions. That is, for all c ∈ CA, χ ∈ DA and I ∈ I,

〈〈c •A χ〉〉I ≡ ∃I ′. 〈〈c〉〉II′ •B 〈〈χ〉〉I
′
.

Property 2 (Crust Inclusion). For all out , out ′ ∈ Iout, F ∈ F and c ∈ CA, there exist
K ∈ P(CB) and F ′ ∈ F such that, for all in ∈ Iin,(

∃in ′.eFin′,out′ ◦ 〈〈c〉〉
in′,out′

in,out

)
≡ K ◦ eF

′

in,out .

Property 3 (Axiom Correctness). For all ϕ ∈ CmdA, (P,Q) ∈ Ax JϕKA, out ∈ Iout

and F ∈ F ,

`B

{
(|P |)out,F

}
JϕK

{
(|Q|)out,F

}
.

Definition 5.3 (Locality Preserving Translation). A locality-preserving translation
is a pre-locality-preserving translation that satisfies Properties 1, 2 and 3.

Remark. The crust inclusion property is stronger than just asserting that inner crust
is contained within the context plus its outer crust. This is to allow for the fact that
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a command may modify the crust, and we must be able to use this modified crust to
reconstitute the representation of the same context. However, the crust is only ever
altered with respect to the in-interface, so it is only necessary that K in Property 2 be
independent of the choice of in.

Theorem 5.1 (Soundness of Locality-Preserving Translations). A locality-pre-
serving translation is a sound module translation (for any fixed choice of out ∈ Iout and
F ∈ F).

5.1. Proof of Soundness of Locality-Preserving Translations

In this section, assume that τ : A→ B is a locality preserving translation. The following
proposition is sufficient to establish that τ gives rise to a sound module translation.

Proposition 5.2. For all out ∈ Iout and F ∈ F ,and for all P,K ∈ P(StateA) and
C ∈ LA,

Γ `A {P} C {Q} =⇒ JΓK `B

{
(|P |)out,F

}
C
{

(|Q|)out,F
}

,

where

JΓK =
{
f : (|P ′|)out

′,F ′

� (|Q′|)out
′,F ′

∣∣∣∣ (f : P ′� Q′) ∈ Γ and
out ′ ∈ Iout and F ′ ∈ F

}
.

Before embarking on the proof of this proposition, two auxiliary lemmata are required.
The following lemma gives and alternative characterisation of the crust inclusion prop-
erty.

Lemma 5.3 (Crust Inclusion II). For all K ∈ P(CA), in ∈ Iin, out , out ′ ∈ Iout and
F ∈ F ,(
∃in ′.eFin′,out′ ◦ 〈〈K〉〉

in′,out′

in,out

)
⊆ ∃F ′.

(
∀in ′′.eF

′

in′′,out −◦
(
∃in ′.eFin′,out′ ◦ 〈〈K〉〉

in′,out′

in′′,out

))
◦ eF

′

in,out ,

where

〈〈K〉〉I
′

I =
∨
c∈K
〈〈c〉〉I

′

I

is the point-wise lift of the context representation function to predicates.

Note that the converse of this property is trivially true, hence the entailment holds in
both directions.

Proof. Fix arbitrary K ∈ P(CA), in ∈ Iin, out , out ′ ∈ Iout and F ∈ F . Fix c′ ∈ CA
with

c′ ∈
(
∃in ′.eFin′,out′ ◦ 〈〈K〉〉

in′,out′

in,out

)
≡
∨
c∈K

(
∃in ′.eFin′,out′ ◦ 〈〈c〉〉

in′,out′

in,out

)
.

There exists c′′ ∈ K such that

c′ ∈
(
∃in ′.eFin′,out′ ◦ 〈〈c′′〉〉

in′,out′

in,out

)
.



Abstraction and Refinement for Local Reasoning 29

By the Crust Inclusion Property, there exist K ′ ∈ P(CB) and F ′ ∈ F such that, for all
in ′′ ∈ Iin, (

∃in ′.eFin′,out′ ◦ 〈〈c′′〉〉
in′,out′

in′′,out

)
≡ K ′ ◦ eF

′

in′′,out . (1)

Hence, c′ ∈ K ′ ◦ eF ′

in,out , and so there are c1 ∈ K ′ and c2 ∈ eF
′

in,out with c′ = c1 ◦ c2. Fix
in ′′ ∈ Iin and c′2 ∈ eF

′

in′′,out . Since c1 ◦ ◦2 ∈ K ′ ◦ eF
′

in′′,out , it follows by (1) that

c1 ◦ c′2 ∈
(
∃in ′.eFin′,out′ ◦ 〈〈c′′〉〉

in′,out′

in′′,out

)
⊆ ∃in ′.eFin′,out′ ◦ 〈〈K〉〉

in′,out′

in′′,out .

The choice of c′2 was arbitrary, and so

for all c′2, c
′′ ∈ CB, c′2 ∈ eFin′′,out and c′′ = c1◦c′2 =⇒ c′′ ∈ ∃in ′.eFin′,out′•〈〈K〉〉

in′,out′

in′′,out .

Hence

c1 ∈ eFin′′,out −◦
(
∃in ′.eFin′,out′ • 〈〈K〉〉

in′,out′

in′′,out

)
and since the choice of in ′′ was arbitrary,

c1 ∈ ∀in ′′.eFin′′,out −◦
(
∃in ′.eFin′,out′ • 〈〈K〉〉

in′,out′

in′′,out

)
Since c′ = c1 ◦ c2,

c′ ∈ ∃F ′.
(
∀in ′′.eFin′′,out −◦

(
∃in ′.eFin′,out′ • 〈〈K〉〉

in′,out′

in′′,out

))
◦ eF

′

in,out .

Since the choice of c′ was arbitrary, it follows that(
∃in ′.eFin′,out′ ◦ 〈〈K〉〉

in′,out′

in,out

)
⊆ ∃F ′.

(
∀in ′′.eF

′

in′′,out −◦
(
∃in ′.eFin′,out′ ◦ 〈〈K〉〉

in′,out′

in′′,out

))
◦ eF

′

in,out

as required.

We define the notion of an intermediate frame translation, which translates abstract
frames (context predicates) to concrete frames. The intermediate frame translation com-
bines the context representation with the outer crust, but removes the inner crust. When
the frame as applied at the concrete level, the inner crust will already be present: remov-
ing the inner crust from the context is necessary to avoid duplication.

Definition 5.4 (Intermediate Frame Translation). The intermediate frame trans-
lation function

(|(·)|)(·)(·) : P(CStateA)× (Iout ×F)× (Iout ×F)→ P(CStateB)

is defined as:

(|K|)out,Fout′,F ′ =
∨

(ρ,cA)∈K

{ρ} ×
(
∀in ′.eFin′,out′ −◦

(
∃in.eFin,out ◦ 〈〈cA〉〉in,outin′,out′

))
.

The fact that the intermediate frame translation produces concrete frames that exactly
correspond to abstract frames is critical for dealing with the Frame rule in the proof of
Proposition 5.2. This fact is captured formally in the following lemma.
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Lemma 5.4 (Application Preservation II). For allK ∈ P(CStateA), all P ∈ P(StateA),
out ∈ Iout and F ∈ F ,

(|K •A P |)out,F ≡ ∃out ′, F ′. (|K|)out,Fout′,F ′ •B (|P |)out
′,F ′

.

Proof.

(|K • P |)out,F ≡
∨

(ρ′,cA)∈K
(ρ,χA)∈P

{ρ′ ∗ ρ} ×
(
∃in.eFin,out • 〈〈cA • χA〉〉in,out

)

(Property 1)

≡
∨

(ρ′,cA)∈K
(ρ,χA)∈P

{ρ′ ∗ ρ} ×
(
∃in.eFin,out • ∃in ′, out ′. 〈〈cA〉〉in,outin′,out′ • 〈〈χA〉〉in

′,out′
)

≡
∨

(ρ′,cA)∈K
(ρ,χA)∈P

{ρ′ ∗ ρ} ×
(
∃in ′, out ′.∃in.eFin,out ◦ 〈〈cA〉〉in,outin′,out′ • 〈〈χA〉〉in

′,out′
)

(Lemma 5.3)

≡
∨

(ρ′,cA)∈K
(ρ,χA)∈P

{ρ′ ∗ ρ} ×

 ∃in
′, out ′.∃F ′.(
∀in ′′.eF ′

in′′,out′ −◦
(
∃in.eFin,out ◦ 〈〈cA〉〉in,outin′′,out′

))
◦ eF ′

in′,out′ • 〈〈χA〉〉in
′,out′


≡ ∃out ′, F ′. ∨

(ρ′,cA)∈K

{ρ′} ×
(
∀in ′′.eF

′

in′′,out′ −◦
(
∃in.eFin,out ◦ 〈〈cA〉〉in,outin′′,out′

))
•

 ∨
(ρ,χA)∈P

{ρ} ×
(
∃in ′.eF

′

in′,out′ • 〈〈χA〉〉in
′,out′

)
≡ ∃out ′, F ′. (|K|)out,Fout′,F ′ • (|P |)out

′,F ′
.

The proof of Proposition 5.2 inductively transforms a proof in A into a proof in B.

Proof. The proof is by induction on the structure of the proof of `A {P} C {Q},
considering the cases for the last rule applied in the proof. Assume as the inductive
hypothesis that the translated premises have proofs in B. We show how to derive a proof
of the translated conclusions from these translated premises. (We omit the procedure
specification environment when it plays no role in the derivation.)

Fix arbitrary out ∈ Iout, F ∈ F .
Axiom case:

This case is immediate by the Axiom Correctness Property (Property 3).



Abstraction and Refinement for Local Reasoning 31

Frame case:

for all out ′, F ′,
{

(|P |)out
′,F ′}

C
{

(|Q|)out
′,F ′}

for all out ′, F ′,

{
(|K|)out,Fout′,F ′ • (|P |)out

′,F ′}
C{

(|K|)out,Fout′,F ′ • (|Q|)out
′,F ′}

Frame

{
∃out ′, F ′. (|K|)out,Fout′,F ′ • (|P |)out

′,F ′}
C{

∃out ′, F ′. (|K|)out,Fout′,F ′ • (|Q|)out
′,F ′}

Disj

{
(|K • P |)out,F

}
C
{

(|K •Q|)out,F
} Lemma 5.4

Cons case:

P ⊆ P ′

(|P |)out,F ⊆ (|P ′|)out,F

{
(|P ′|)out,F

}
C{

(|Q′|)out,F
} Q′ ⊆ Q

(|Q′|)out,F ⊆ (|Q|)out,F{
(|P |)out,F

}
C
{

(|Q|)out,F
} Cons

Disj case:

for all i ∈ I,
{

(|Pi|)out,F
}

C
{

(|Qi|)out,F
}

{∨
i∈I (|Pi|)out,F

}
C
{∨

i∈I (|Qi|)out,F
} Disj

{(∣∣∨
i∈I Pi

∣∣)out,F} C
{(∣∣∨

i∈I Qi
∣∣)out,F}

PDef case:

for all (fi : P� Q) ∈ Γ,
out ′ ∈ Iout, F

′ ∈ F ,
JΓ′,ΓK `B

{(∣∣∣∣ ∃−→v . {−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −}× P(−→v )

∣∣∣∣)out′,F ′}
Ci{(∣∣∣∣ ∃−→w . {−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w }× Q(−→w )

∣∣∣∣)out′,F ′}

for all (fi : P� Q) ∈ Γ,
out ′ ∈ Iout, F

′ ∈ F ,
JΓ′,ΓK `B

{
∃−→v . {−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −}

× (|P(−→v )|)out
′,F ′

}
Ci{

∃−→w . {−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w }
× (|Q(−→w )|)out

′,F ′

}

for all (fi : P� Q) ∈ JΓK , JΓ′,ΓK `B
{∃−→v . {−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −} × P(−→v )}

Ci
{∃−→w . {−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w } × Q(−→w )}

(?)
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(?) JΓ′,ΓK `B

{
(|P |)out,F

}
C
{

(|Q|)out,F
}

JΓ′K `B

{
(|P |)out,F

}
procs −→r1 := f1(−→x1) {C1}, . . . ,−→rk := fk(−→xk) {Ck} in C{

(|R|)out,F
}

PDef

The two further premises of the PDef rule, which are not shown in the above derivation,
are easily dispatched since J(·)K preserves the procedure names in a procedure specifica-
tion environment.

The cases for the remaining rules follow by the point-wise and variable-preserving
nature of the translation functions.

This completes the proof of Theorem 5.1.

5.2. Eliminating Crust

Our theory includes the explicit concept of crust in order to provide additional resource
that was necessary for the low-level operations, but not included in the representation of
the abstract resource. However, in general it is possible to choose a different representa-
tion that avoids the need for crust. In fact, such a choice is embodied in a key element of
the soundness proof, namely the intermediate translation functions (Definitions 5.2 and
5.4).

The intermediate translation functions essentially add the outer crust to representa-
tions of data structures and contexts while removing the inner crust from representa-
tions of contexts. Because of the crust inclusion and application preservation properties
of the original representations, this modified representation also preserves application
(Lemma 5.4). (Note that the interface set for this modified representation is Iout × F ,
which can all be considered as the out part.) This modified representation incorporates
all of the resource required at the low level by its very construction, and so no further
crust is required.

5.3. Including the Conjunction Rule

If we wish to add the conjunction rule to the locality-preserving theory, we can add a case
to the proof of Proposition 5.2. The Conj rule can be dealt with in the same fashion as
the Disj rule, provided that (|(·)|)(·) distributes over conjunctions. Together, the following
two conditions are sufficient to establish this:

— for all χ, χ′ ∈ D with χ 6= χ′, and all I ∈ I, 〈〈χ〉〉I ∧ 〈〈χ′〉〉I ≡ ∅; and
— for all out ∈ Iout and F ∈ F , the predicate

∨{
eFin,out

∣∣ in ∈ Iin
}

is precise.

Remark. It is not a coincidence that these conditions are similar to those that pre-
vent a command from behaving angelically given in §2: in both cases, the conditions
are constraining the predicate transformers corresponding to the abstraction relation or
command to being conjunctive.
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5.4. Module Translation: τ1 : T→ H

We now present a locality-preserving translation τ1 from the tree module T into the heap
module H. This translation represents each tree node a as a block of four cells in the
heap, a 7→ l, u, d, r, which contain pointers to the node’s left sibling (l), parent (u), first
child (d) and right sibling (r). This is the representation illustrated in Fig. 3(b).

As expected, the in-interface consists of the addresses of the left- and right-most nodes
at the root level of a tree, while the out-interface consists of the addresses of the tree’s
parent node and of the nodes immediately adjacent to the tree on the left and right.

Note that for the empty tree ∅, the addresses constituting the in-interface are not
simply nil ; rather the “address of the left-most node” should actually be the address of
the node immediately adjacent to the tree on the right and the “address of the right-most
node” should be the address of the node adjacent on the left. If this were not the case,
it would disrupt the continuous list of nodes. On the other hand, if the nodes described
in the out-interface do not exist, their addresses will be nil .

For contexts, addresses in the inner interface and outer interface can be the same. This
is particularly evident in the case of the context hole, −, for which the two interfaces
must match exactly.

Definition 5.5 (τ1 : T → H). The pre-locality-preserving translation τ1 : T → H is
constructed as follows:

— the in-interfaces Iin = (Addrnil )2 are pairs of addresses;
— the out-interfaces Iout = (Addrnil )3 are triples of addresses;
— the data representation function is defined inductively by

〈〈∅〉〉(i,j),(l,u,r) def= emp ∧ i = r ∧ j = l

〈〈a[t]〉〉(i,j),(l,u,r) def= ∃i′, j′.a 7→ l, u, i′, r ∗ 〈〈t〉〉(i′,j′),(nil ,a,nil) ∧ i = j = a

〈〈t1 ⊗ t2〉〉(i,j),(l,u,r)
def= ∃i′, j′. 〈〈t1〉〉(i,j

′),(l,u,i′) ∗ 〈〈t2〉〉(i
′,j),(j′,u,r);

— the context representation function is defined inductively by

〈〈−〉〉II′
def= emp ∧ I = I ′

〈〈a[c]〉〉(i,j),(l,u,r)I′
def= ∃i′, j′.a 7→ l, u, i′, r ∗ 〈〈c〉〉(i

′,j′),(nil ,a,nil)
I′ ∧ i = j = a

〈〈t⊗ c〉〉(i,j),(l,u,r)I′
def= ∃i′, j′. 〈〈t〉〉(i,j′),(l,u,i′) ∗ 〈〈c〉〉(i

′,j),(j′,u,r)
I′

〈〈c⊗ t〉〉(i,j),(l,u,r)I′
def= ∃i′, j′. 〈〈c〉〉(i,j

′),(l,u,i′)
I′ ∗ 〈〈t〉〉(i′,j),(j′,u,r);

— the crust parameters F = (Addrnil )7 are 7-tuples of addresses;
— the crust predicate is defined as

e
−→
f
(i,j),(l,u,r)

def= (l 7→ f1, u, f2, i ∨ (l = nil ∧ (u 7→ f3, f4, i, f5 ∨ (u = nil ∧ emp))))

∗ (r 7→ j, u, f6, f7 ∨ (r = nil ∧ emp)); and

— the substitutive implementation function is given by replacing each tree-module com-
mand with a call to the correspondingly-named procedure given in Fig. 4.
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E.left
def
= E

E.up
def
= E + 1

E.down
def
= E + 2

E.right
def
= E + 3

n := newNode()
def
= n := alloc(4)

disposeNode(E)
def
= dispose(E, 4)

m := getUp(n) {
m := [n .up]

}

m := getLast(n) {
local x in

m := [n .down] ;

if m 6= nil then

x := [m .right] ;

while x 6= nil do

m := x ;

x := [m .right]

}

newNodeAfter(n) {
local x , y , z in

y := [n .right] ;

z := [n .up] ;

z := newNode();

[x .left] := n ;

[x .up] := z ;

[x .down] := nil ;

[x .right] := y ;

[n .right] := x ;

if y 6= nil then

[y .left] := x

}

m := getFirst(n) {
m := [n .down]

}

m := getRight(n) {
m := [n .right]

}

m := getLeft(n) {
m := [n .left]

}

deleteTree(n) {
local x , y , z , w in

x := [n .right] ;

y := [n .left] ;

z := [n .up] ;

w := [n .down] ;

call disposeForest(w);

if x 6= nil then

[x .left] := y ;

if y 6= nil then

[y .right] := x

else

if z 6= nil then

[z .down] := x

}

disposeForest(n) {
local r , d in

if n 6= nil then

r := [n .right] ;

call disposeForest(r);

d := [n .down] ;

call disposeForest(d);

disposeNode(n)

}

Fig. 4. Procedures for the heap-based implementation of trees
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Theorem 5.5 (Soundness of τ1). The pre-locality-preserving translation τ1 is a locality-
preserving translation.

5.4.1. Soundness of τ1 : T→ H

Lemma 5.6 (τ1 Application Preservation). For all c ∈ CTree, t ∈ Tree and I ∈ I,

〈〈c • t〉〉I ≡ ∃I ′. 〈〈c〉〉II′ • 〈〈t〉〉I
′
.

Proof. The proof is by induction on the structure of the context c, assuming some
fixed t ∈ Tree.
c = − case:

∃I ′. 〈〈−〉〉II′ • 〈〈t〉〉I
′
≡ ∃I ′. I = I ′ ∧ 〈〈t〉〉I

′

≡ 〈〈t〉〉I

≡ 〈〈− • t〉〉I .

c = a[c′] case:

∃I ′. 〈〈a[c′]〉〉(i,j),(l,u,r)I′ • 〈〈t〉〉I
′

≡ ∃I ′.
(
∃i′, j′.a 7→ l, u, i′, r ∗ 〈〈c′〉〉(i

′,j′),(nil ,a,nil)
I′ ∧ i = j = a

)
• 〈〈t〉〉I

′

≡ ∃i′, j′.a 7→ l, u, i′, r ∗
(
∃I ′. 〈〈c′〉〉(i

′,k′),(nil ,a,nil)
I′ • 〈〈t〉〉I

′
)
∧ i = j = a

≡ ∃i′, j′.a 7→ l, u, i′, r ∗ 〈〈c′ • t〉〉(i
′,k′),(nil ,a,nil) ∧ i = j = a

≡ 〈〈a[c′ • t]〉〉(i,j),(l,u,r)

≡ 〈〈a[c′] • t〉〉(i,j),(l,u,r).

c = c′ ⊗ t′ case:

∃I ′. 〈〈c′ ⊗ t′〉〉(i,j),(l,u,r)I′ • 〈〈t〉〉I
′

≡ ∃I ′.
(
∃i′, j′. 〈〈c′〉〉(i,j

′),(l,u,i′)
I′ ∗ 〈〈t′〉〉(i

′,j),(j′,u,r)
)
• 〈〈t〉〉I

′

≡ ∃i′, j′.
(
∃I ′. 〈〈c′〉〉(i,j

′),(l,u,i′)
I′ • 〈〈t〉〉I

′
)
∗ 〈〈t′〉〉(i

′,j),(j′,u,r)

≡ ∃i′, j′. 〈〈c′ • t〉〉(i,j
′),(l,u,i′) ∗ 〈〈t′〉〉(i

′,j),(j′,u,r)

≡ 〈〈(c′ • t)⊗ t′〉〉(i,j),(l,u,r)

≡ 〈〈(c′ ⊗ t′) • t〉〉(i,j),(l,u,r).

The case where c = t′ ⊗ c′ follows the same pattern as the c′ ⊗ t′ case.

The following lemma is used to prove the crust inclusion property. It essentially cap-
tures that a given tree and out-interface uniquely determine an in-interface. When the
tree is non-empty, the in-interface is the identifiers of the left-most and right-most nodes
at the top level of the tree; when the tree is empty, the out-interface provides the correct
identifiers.
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Lemma 5.7. For all out ∈ Iout and t ∈ Tree, there exists some in ∈ Iin such that

〈〈t〉〉in,out ≡ ∃in ′. 〈〈t〉〉in
′,out .

The proof is by a straightforward induction on the structure of the tree t.

Lemma 5.8 (τ1 Crust Inclusion). For all out , out ′ ∈ Iout, F ∈ F and c ∈ CTree, there
exist K ∈ P(Heap) and F ′ ∈ F such that, for all in ∈ Iin,(

∃in ′.eFin′,out′ ◦ 〈〈c〉〉
in′,out′

in,out

)
≡ K ◦ eF

′

in,out .

Proof. The proof is by induction on the structure of the context c, assuming some
fixed out , out ′ ∈ Iout and F ∈ F .
c = − case:

Choose K = emp if out ′ = out and K = False otherwise. If out ′ 6= out then both sides
of the equation are equivalent to False; otherwise, observe that

∃in ′.eFin′,out′ ◦ 〈〈−〉〉
in′,out′

in,out ≡ e
F
in,out

≡ K ◦ eFin,out .

c = a[c′] case:
Let out ′′ = (nil ,a,nil) and F ′′ = (nil ,nil , l, u, r,nil ,nil), where (l, u, r) = out ′. By the
inductive hypothesis, there exist K ′ and F ′ such that, for all in,

∃i′, j′.eF
′′

(i′,j′),out′′ ◦ 〈〈c
′〉〉(i

′,j′),out′′

in,out ≡ K ′ ◦ eF
′

in,out .

Choose K = eF(a,a),out′ ∗K
′; choose F ′ as given above. Observe that, for all in,

∃in ′.eFin′,out′ ◦ 〈〈c〉〉
in′,out′

in,out

≡ ∃in ′.eFin′,out′ ∗ ∃i′, j′.a 7→ l, u, d, r ∗ 〈〈c′〉〉(i
′,j′),(nil ,a,nil)

I′ ∧ in ′ = (a,a)

≡ eF(a,a),out′ ∗ ∃i
′, j′.eF

′′

(i′,j′),out′′ ◦ 〈〈c
′〉〉(i

′,j′),out′′

in,out

≡ eF(a,a),out′ ∗K
′ ◦ eF

′

in,out

≡ K ◦ eF
′

in,out .

c = c′ ⊗ t case:
We can assume that t 6= ∅, since otherwise c = c′ and the result holds by the inductive
assumption. Thus t = a[t1]⊗ t2 for some a, t1, t2. In order to apply the inductive hypoth-
esis, we must determine the crust for the c′ part of c. The left or parent node part of the
crust will be the same as for c; the right node will be a.

Suppose that out ′ = (l, u, r) and F = (f1, . . . , f7). Let f ′6 be such that, for some j′′′,

〈〈t1〉〉(f
′
6,j

′′′),(nil ,a,nil) ≡ ∃in ′′′. 〈〈t1〉〉in
′′′,(nil ,a,nil).

Let f ′7 be such that, for some j,

〈〈t2〉〉(f
′
7,j),(a,u,r) ≡ ∃in ′′. 〈〈t2〉〉in

′′,(a,u,r).

Let F ′ = (f1, . . . , f5, f ′6, f
′
7). By the inductive hypothesis, let K ′ and F ′′ be such that,
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for all in,

∃i, j′.eF
′

(i,j′),(l,u,a) ◦ 〈〈c
′〉〉(i,j

′),(l,u,a)
in,out ≡ K ′ ◦ eF

′′

in,out

Now, by construction, for arbitrary in,

∃i, j.eF(i,j),out′ ◦ 〈〈c
′ ⊗ t〉〉(i,j),(l,u,r)in,out

≡ ∃i, j.eF(i,j),out′ ◦ ∃i
′, j′. 〈〈c′〉〉(i,j

′),(l,u,i′)
in,out ∗ 〈〈a[t1]⊗ t2〉〉(i

′,j),(j′,u,r)

≡ ∃i, j.eF(i,j),out′ ◦ ∃i
′, j′. 〈〈c′〉〉(i,j

′),(l,u,i′)
in,out ∗

∃i′′, j′′. 〈〈a[t1]〉〉(i
′,j′′),(j′,u,i′′) ∗ 〈〈t2〉〉(i

′′,j),(j′′,u,r)

≡ ∃i, j.eF(i,j),out′ ◦ ∃j
′. 〈〈c′〉〉(i,j

′),(l,u,a)
in,out ∗

∃i′′, i′′′, j′′′.a 7→ j′, u, i′′′, i′′ ∗ 〈〈t1〉〉(i
′′′,j′′′),(nil ,a,nil) ∗ 〈〈t2〉〉(i

′′,j),(a,u,r)

≡ ∃i, j.eF(i,j),out′ ◦ ∃j
′. 〈〈c′〉〉(i,j

′),(l,u,a)
in,out ∗

∃j′′′.a 7→ j′, u, f ′6, f
′
7 ∗ 〈〈t1〉〉(f

′
6,j

′′′),(nil ,a,nil) ∗ 〈〈t2〉〉(f
′
7,j),(a,u,r)

≡ ∃i, j, j′. (l 7→ f1, u, f2, i ∨ (l = nil ∧ (u 7→ f3, f4, i, f5 ∨ (u = nil ∧ emp))))

∗ (r 7→ j, u, f6, f7 ∨ (r = nil ∧ emp)) ◦ 〈〈c′〉〉(i,j
′),(l,u,a)

in,out ∗

a 7→ j′, u, f ′6, f
′
7 ∗ ∃j′′′. 〈〈t1〉〉(f

′
6,j

′′′),(nil ,a,nil) ∗ 〈〈t2〉〉(f
′
7,j),(a,u,r)

≡ ∃i, j′. (l 7→ f1, u, f2, i ∨ (l = nil ∧ (u 7→ f3, f4, i, f5 ∨ (u = nil ∧ emp))))

∗ a 7→ j′, u, f ′6, f
′
7 ◦ 〈〈c′〉〉

(i,j′),(l,u,a)
in,out

∗ ∃j, j′′. (r 7→ j, u, f6, f7 ∨ (r = nil ∧ emp)) ∗

〈〈t1〉〉(f
′
6,j

′′′),(nil ,a,nil) ∗ 〈〈t2〉〉(f
′
7,j),(a,u,r)

≡ ∃i, j′.eF
′

(i,j′),(l,u,a) ◦ 〈〈c
′〉〉(i,j

′),(l,u,a)
in,out

∗ ∃j, j′′. (r 7→ j, u, f6, f7 ∨ (r = nil ∧ emp)) ∗

〈〈t1〉〉(f
′
6,j

′′′),(nil ,a,nil) ∗ 〈〈t2〉〉(f
′
7,j),(a,u,r)

≡ K ′ ∗ ∃j, j′′. (r 7→ j, u, f6, f7 ∨ (r = nil ∧ emp)) ∗

〈〈t1〉〉(f
′
6,j

′′′),(nil ,a,nil) ∗ 〈〈t2〉〉(f
′
7,j),(a,u,r) ◦ eF

′′

in,out

Let

K ≡ K ′ ∗ ∃j, j′′. (r 7→ j, u, f6, f7 ∨ (r = nil ∧ emp)) ∗

〈〈t1〉〉(f
′
6,j

′′′),(nil ,a,nil) ∗ 〈〈t2〉〉(f
′
7,j),(a,u,r).

K and F ′′ therefore have the desired property.
The case where c = t⊗ c′ is similar.

Lemma 5.9. For all ϕ ∈ CmdT, (P,Q) ∈ Ax JϕKT, out ∈ Iout and F ∈ F ,

`H

{
(|P |)out,F

}
JϕK

{
(|Q|)out,F

}
.
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We omit the full proof details here, which can be found in (Dinsdale-Young et al.,
2010b). Figs. 5 and 6 show proof outlines for the getLast axioms. The two cases cover
when the node whose last child is to be fetched has and does not have children. The
correctness of the axioms for getLast follow from these proofs by the procedure definition
and procedure call rules.

This completes the proof of the soundness of the translation τ1 : T→ H (Theorem 5.5).

5.5. Module Translation: τ2 : T→ H + L

In this section, we give the formal definition of a locality-preserving translation τ2 from
the tree module T into the combination of the heap and list modules H + L.

Notation.
A number of notational conventions are used to simplify predicates over AH +AL. Pure
heap predicates are implicitly lifted to the combined domain with the list-store component
emp; list-store predicates are lifted similarly. The operator ∗ on the combined domain is
the product of the ∗ operators from each of the two domains.

Definition 5.6 (τ2 : T→ H+L). The pre-locality-preserving translation τ2 : T→ H+L
is constructed as follows:

— the in-interfaces Iin = (Addr)∗ are sequences of addresses;
— the out-interfaces Iout = Addr are addresses;
— the data representation function is defined inductively by

〈〈∅〉〉in,out def= emp ∧ in = ∅
〈〈a[t]〉〉in,out def= in = a ∧ ∃a, l .a 7→ out , a ∗ a Z⇒ [l ] ∗ 〈〈t〉〉l,a

〈〈t1 ⊗ t2〉〉in,out
def= ∃l1, l2. (in = l1 · l2) ∧ 〈〈t1〉〉l1,out ∗ 〈〈t2〉〉l2,out ;

— the context representation function is defined inductively by

〈〈−〉〉in,outin′,out′
def= emp ∧ (in = in ′) ∧ (out = out ′)

〈〈a[c]〉〉in,outI′
def= in = a ∧ ∃a, l .a 7→ out , a ∗ a Z⇒ [l ] ∗ 〈〈c〉〉l,aI′

〈〈c⊗ t〉〉in,outI′
def= ∃l1, l2. (in = l1 · l2) ∧ 〈〈c〉〉l1,outI′ ∗ 〈〈t〉〉l2,out

〈〈t⊗ c〉〉in,outI′
def= ∃l1, l2. (in = l1 · l2) ∧ 〈〈t〉〉l1,out ∗ 〈〈c〉〉l2,outI′ ;

— the crust parameters F = (Addr)∗ × (Addr)∗ × Addrnil are tuples of two sequences of
addresses and a further address or nil ;

— the crust predicate is defined as

el1,l2,a
in,out

def= ∃a′. out 7→ a, a′ ∗ a′ Z⇒ [l1 · in · l2] ∗
∗∏

a∈l1·l2

a 7→ out ; and

— the substitutive implementation function is given by replacing each tree-module com-
mand with a call to the correspondingly-named procedure given in Fig. 7.

Theorem 5.10 (Soundness of τ2). The pre-locality-preserving translation τ2 is a
locality-preserving translation.
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m := getLast(n) {n
n ⇀⇁ a ∗ m ⇀⇁ −× eF

(a,a),(l,u,r) ∗ 〈〈a[t1 ⊗ b[t2]]〉〉(a,a),(l,u,r)
o

local x inn
∃i, j. n ⇀⇁ a ∗ m ⇀⇁ − ∗ x ⇀⇁ −× eF

(a,a),(l,u,r) ∗ a 7→ l, u, i, r ∗ 〈〈t1 ⊗ b[t2]〉〉(i,j),(nil,a,nil)
o

m := [n .down] ;n
∃i, j. n ⇀⇁ a ∗ m ⇀⇁ i ∗ x ⇀⇁ −× eF

(a,a),(l,u,r) ∗ a 7→ l, u, i, r ∗ 〈〈t1 ⊗ b[t2]〉〉(i,j),(nil,a,nil)
o

n
m ⇀⇁ i ∗ x ⇀⇁ −× 〈〈t1 ⊗ b[t2]〉〉(i,j),(nil,a,nil)

o
// t1 ⊗ b[t2] 6= ∅ =⇒ i 6= nil

if m 6= nil then(
∃d, x, t′, t′′. (i[t′]⊗ t′′ = t1 ⊗ b[t2]) ∧ m ⇀⇁ i ∗ x ⇀⇁ −
× i 7→ nil ,a, d, x ∗ 〈〈t′〉〉(d,−),(nil,i,nil) ∗ 〈〈t′′〉〉(x,j),(i,a,nil)

)
x := [m .right] ;(
∃m, j1, d, x, t, t′, t′′. (t⊗m[t′]⊗ t′′ = t1 ⊗ b[t2]) ∧ m ⇀⇁m ∗ x ⇀⇁ x

× 〈〈t〉〉(i,j1),(nil,a,m) ∗m 7→ j1,a, d, x ∗ 〈〈t′〉〉(d,−),(nil,m,nil) ∗ 〈〈t′′〉〉(x,j),(m,a,nil)

)
while x 6= nil do8><>:
∃m, j1, d, x, t, t′, t′′. (t⊗m[t′]⊗ t′′ = t1 ⊗ b[t2]) ∧ x 6= nil ∧ m ⇀⇁m ∗ x ⇀⇁ x

× 〈〈t〉〉(i,j1),(nil,a,m) ∗m 7→ j1,a, d, x

∗ 〈〈t′〉〉(d,−),(nil,m,nil) ∗ 〈〈t′′〉〉(x,j),(m,a,nil)

9>=>;(
∃m, d, x, x′, t, t′, t′′. (t⊗ x[t′]⊗ t′′ = t1 ⊗ b[t2]) ∧ m ⇀⇁m ∗ x ⇀⇁ x

× 〈〈t〉〉(i,m),(nil,a,x) ∗ x 7→ m,a, d, x′ ∗ 〈〈t′〉〉(d,−),(nil,x,nil) ∗ 〈〈t′′〉〉(x,j),(m,a,nil)

)
m := x ;

x := [m .right]8><>:
∃m, j1, d, x, t, t′, t′′. (t⊗m[t′]⊗ t′′ = t1 ⊗ b[t2]) ∧ m ⇀⇁m ∗ x ⇀⇁ x

× 〈〈t〉〉(i,j1),(nil,a,m) ∗m 7→ j1,a, d, x

∗ 〈〈t′〉〉(d,−),(nil,m,nil) ∗ 〈〈t′′〉〉(x,j),(m,a,nil)

9>=>;8><>:
∃m, j1, d, t, t′, t′′. (t⊗m[t′]⊗ t′′ = t1 ⊗ b[t2]) ∧ m ⇀⇁m ∗ x ⇀⇁ nil

× 〈〈t〉〉(i,j1),(nil,a,m) ∗m 7→ j1,a, d,nil

∗ 〈〈t′〉〉(d,−),(nil,m,nil) ∗ 〈〈t′′〉〉(nil,j),(m,a,nil)

9>=>;(
∃m, j1, d, t, t′. (t⊗m[t′] = t1 ⊗ b[t2]) ∧ m ⇀⇁m ∗ x ⇀⇁ nil

× 〈〈t〉〉(i,j1),(nil,a,m) ∗m 7→ j1,a, d,nil ∗ 〈〈t′〉〉(d,−),(nil,m,nil)

)
(
∃j1, d. m ⇀⇁ b ∗ x ⇀⇁ nil

× 〈〈t1〉〉(i,j1),(nil,a,b) ∗ b 7→ j1,a, d,nil ∗ 〈〈t2〉〉(d,−),(nil,b,nil)

)
n
m ⇀⇁ b ∗ x ⇀⇁ nil × 〈〈t1 ⊗ b[t2]〉〉(i,j),(nil,a,nil)

o
n
∃i, j. n ⇀⇁ a ∗ m ⇀⇁ b ∗ x ⇀⇁ nil × eF

(a,a),(l,u,r) ∗ a 7→ l, u, i, r ∗ 〈〈t1 ⊗ b[t2]〉〉(i,j),(nil,a,nil)
o

n
n ⇀⇁ a ∗ m ⇀⇁ b× eF

(a,a),(l,u,r) ∗ 〈〈a[t1 ⊗ b[t2]]〉〉(a,a),(l,u,r)
o

}

Fig. 5. Proof outline for getLast implementation (where node is present)
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m := getLast(n) {n
n ⇀⇁ a ∗ m ⇀⇁ −× eF

(a,a),(l,u,r) ∗ 〈〈a[∅]〉〉(a,a),(l,u,r)
o

local x in˘
n ⇀⇁ a ∗ m ⇀⇁ − ∗ x ⇀⇁ −× eF

(a,a),(l,u,r) ∗ a 7→ l, u,nil , r
¯

m := [n .down] ;˘
n ⇀⇁ a ∗ m ⇀⇁ nil ∗ x ⇀⇁ −× eF

(a,a),(l,u,r) ∗ a 7→ l, u,nil , r
¯

if m 6= nil then

. . .˘
n ⇀⇁ a ∗ m ⇀⇁ nil ∗ x ⇀⇁ −× eF

(a,a),(l,u,r) ∗ a 7→ l, u,nil , r
¯n

n ⇀⇁ a ∗ m ⇀⇁ nil × eF
(a,a),(l,u,r) ∗ 〈〈a[∅]〉〉(a,a),(l,u,r)

o
}

Fig. 6. Proof outline for getLast implementation (where node is absent)

5.5.1. Soundness of τ2 : T→ H + L

Lemma 5.11 (τ2 Application Preservation). For all c ∈ CTree, t ∈ Tree and I ∈ I,

〈〈c • t〉〉I ≡ ∃I ′. 〈〈c〉〉II′ • 〈〈t〉〉I
′
.

Proof. The proof is by induction on the structure of the context c, assuming some
fixed t ∈ Tree.
c = − case:

∃I ′. 〈〈−〉〉II′ • 〈〈t〉〉I
′
≡ ∃I ′. I = I ′ ∧ 〈〈t〉〉I

′

≡ 〈〈t〉〉I

≡ 〈〈− • t〉〉I .

c = a[c′] case:

∃I ′. 〈〈a[c′]〉〉in,outI′ • 〈〈t〉〉I
′

≡ ∃I ′.
(

in = a ∧ ∃a, l .a 7→ out , a ∗ a Z⇒ [l ] ∗ 〈〈c′〉〉l,aI′

)
• 〈〈t〉〉I

′

≡ in = a ∧ ∃a, l .a 7→ out , a ∗ a Z⇒ [l ] ∗
(
∃I ′. 〈〈c′〉〉l,aI′ • 〈〈t〉〉I

′
)

≡ in = a ∧ ∃a, l .a 7→ out , a ∗ a Z⇒ [l ] ∗ 〈〈c′ • t〉〉l,a

≡ 〈〈a[c′ • t]〉〉in,out

≡ 〈〈a[c′] • t〉〉in,out .
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E.parent
def
= E

E.children
def
= E + 1

n := newNode()
def
= n := alloc(2)

disposeNode(E)
def
= dispose(E, 2)

m := getUp(n) {
local x in

m := [n .parent] ;

x := [m .parent] ;

if x = nil then

m := nil

}

m := getLast(n) {
local x in

x := [n .children] ;

m := x .getTail()

}

newNodeAfter(n) {
local x , y , z , w in

x := [n .parent] ;

z := [x .children] ;

y := newNode();

[y .parent] := x ;

z .insert(n , y);

w := newList();

[y .children] := w

}

m := getFirst(n) {
local x in

x := [n .children] ;

m := x .getHead()

}

m := getRight(n) {
local x , y in

x := [n .parent] ;

y := [x .children] ;

m := y .getNext(n)

}

m := getLeft(n) {
local x , y in

x := [n .parent] ;

y := [x .children] ;

m := y .getPrev(n)

}

deleteTree(n) {
local x , y , z in

x := [n .parent] ;

y := [x .children] ;

y .remove(n);

y := [n .children] ;

z := y .getHead();

while z 6= nil do

call deleteTree(z);

z := y .getHead() ;

deleteList(y);

disposeNode(n)

}

Fig. 7. Procedures for the list-based implementation of trees
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c = c′ ⊗ t′ case:

∃I ′. 〈〈c′ ⊗ t′〉〉in,outI′ • 〈〈t〉〉I
′

≡ ∃I ′.
(
∃l1, l2. (in = l1 · l2) ∧ 〈〈c′〉〉l1,outI′ ∗ 〈〈t′〉〉l2,out

)
• 〈〈t〉〉I

′

≡ ∃l1, l2. (in = l1 · l2) ∧
(
∃I ′. 〈〈c′〉〉l1,outI′ • 〈〈t〉〉I

′
)
∗ 〈〈t′〉〉l2,out

≡ ∃l1, l2. (in = l1 · l2) ∧ 〈〈c′ • t〉〉l1,out ∗ 〈〈t′〉〉l2,out

≡ 〈〈(c′ • t)⊗ t′〉〉in,out

≡ 〈〈(c′ ⊗ t′) • t〉〉in,out .

The case where c = t′ ⊗ c′ follows the same pattern as the c′ ⊗ t′ case.

Lemma 5.12 (τ2 Crust Inclusion). For all out , out ′ ∈ Iout, F ∈ F and c ∈ CTree,
there exist K ∈ P(CH+L) and F ′ ∈ F such that, for all in ∈ Iin,(

∃in ′.eFin′,out′ ◦ 〈〈c〉〉
in′,out′

in,out

)
≡ K ◦ eF

′

in,out .

Proof. The proof is by induction on the structure of the context c, assuming some
fixed out , out ′ ∈ Iout and F ∈ F .
c = − case:

Choose K = emp if out ′ = out and K = False otherwise; choose F ′ = F . If out ′ 6= out
then both sides of the equation are equivalent to False; otherwise, observe that

∃in ′.eFin′,out′ ◦ 〈〈−〉〉
in′,out′

in,out ≡ e
F
in,out

≡ K ◦ eFin,out .

c = a[c′] case:
By the inductive hypothesis, there exist K ′ and F ′ such that, for all in,

∃l .e∅,∅,out′
l,a ◦ 〈〈c′〉〉l,ain,out ≡ K

′ ◦ eF
′

in,out .

Choose K = eFa,out′ ◦K ′; choose F ′ as given above. Observe that

∃in ′.eFin′,out′ ◦ 〈〈a[c′]〉〉in
′,out′

in,out

≡ ∃in ′.eFin′,out′ ◦
(

in ′ = a ∧ ∃a, l .a 7→ out ′, a ∗ a Z⇒ [l ] ∗ 〈〈c′〉〉l,ain,out

)
≡ eFa,out′ ◦ ∃l .e

∅,∅,out′
l,a ◦ 〈〈c′〉〉l,ain,out

≡ eFa,out′ ◦K ′ ◦ eF
′

in,out

≡ K ◦ eF
′

in,out .

c = c′ ⊗ t′ case:
Observe that there is exactly one choice of l2 ∈ (Addr)∗ such that 〈〈t′〉〉l2,out′ 6≡ false. Let
l̂2 be that choice. Observe also that there exists some K ′ such that

〈〈t′〉〉l̂2,out
′
≡ K ′ ∗

∗∏
a∈l̂2

a 7→ out ′.
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Let (l ′1, l
′
2, a
′) = F . By the inductive hypothesis, there exist K ′′ and F ′ such that, for all

in,

∃l1.e
l′1 ,̂l2·l

′
2,a

′

l1,out′
◦ 〈〈c′〉〉l1,out

′

in,out ≡ K
′′ ◦ eF

′

in,out .

Choose K = K ′ ◦K ′′; choose F ′ as given above. Observe that

∃in ′.el′1,l
′
2,a

′

in′,out′ ◦ 〈〈c
′ ⊗ t′〉〉in

′,out′

in,out

≡ ∃in ′.

∃a. out ′ 7→ a′, a ∗ a Z⇒ [l ′1 · in ′ · l ′2] ∗
∗∏

a∈l′1·l′2

a 7→ out ′


◦ ∃l1. in ′ = l1 · l̂2 ∧ 〈〈c′〉〉l1,out

′

in,out ∗ 〈〈t
′〉〉l̂2,out

′

≡ ∃l1.

∃a. out ′ 7→ a′, a ∗ a Z⇒
[
l ′1 · l1 · l̂2 · l ′2

]
∗

∗∏
a∈l′1·l′2

a 7→ out ′


◦ 〈〈c′〉〉l1,out

′

in,out ∗K
′ ∗

∗∏
a∈l̂2

a 7→ out ′

≡ K ′ ◦ ∃l1.e
l′1 ,̂l2·l

′
2,a

′

l1,out′
◦ 〈〈c′〉〉l1,out

′

in,out

≡ K ′ ◦K ′′ ◦ eF
′

in,out

≡ K ◦ eF
′

in,out .

The case where c = t′ ⊗ c′ follows the same pattern as the c′ ⊗ t′ case.

Lemma 5.13 (τ2 Axiom Correctness). For all ϕ ∈ CmdL, (P,Q) ∈ Ax JϕKL, out ∈
Iout and F ∈ F ,

`H+L

{
(|P |)out,F

}
JϕK

{
(|Q|)out,F

}
.

We omit the full proof details here, which are due to Wheelhouse and can be found
in (Dinsdale-Young et al., 2010b). Fig. 8 shows one of the simpler proof cases involved
in establishing axiom correctness, namely for the getUp axiom.

This completes the proof of Theorem 5.10.

5.6. Module Translation: τ3 : H + H→ H

Another example of a locality-preserving translation is the natural implementation of a
pair of heap modules H + H with a single heap module H that simply treats the two
heaps as (disjoint) portions of the same heap. This example is an important one, as it
does not result in a surjective abstraction relation (different abstract heap pairs can map
to the same concrete heap), but is still a sound locality preserving translation.

Definition 5.7 (τ3 : H+H→ H). The pre-locality-preserving translation τ3 : H+H→ H
is constructed as follows:
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m := getUp(n) {n
m ⇀⇁ − ∗ n ⇀⇁ b× ∃in.eF

in,out • 〈〈a[t1 ⊗ b[t2]⊗ t3]〉〉in,out
o

(
m ⇀⇁ − ∗ n ⇀⇁ b× eF

a,out • ∃a, l1, l3.a 7→ out , a ∗ a Z⇒ [l1 · b · l3]

∗ 〈〈t1〉〉l1,a ∗ ∃a′, l .b 7→ a, a′ ∗ a′ Z⇒ [l2] ∗ 〈〈t2〉〉l2,b ∗ 〈〈t3〉〉l3,a

)
n

m ⇀⇁ − ∗ n ⇀⇁ b× a 7→ out ∗ b 7→ a
o

local x inn
m ⇀⇁ − ∗ n ⇀⇁ b ∗ x ⇀⇁ −× a 7→ out ∗ b 7→ a

o
m := [n .parent] ;n

m ⇀⇁ a ∗ n ⇀⇁ b ∗ x ⇀⇁ −× a 7→ out ∗ b 7→ a
o

x := [m .parent] ;n
m ⇀⇁ a ∗ n ⇀⇁ b ∗ x ⇀⇁ out × a 7→ out ∗ b 7→ a

o
if x = nil then

m := niln
m ⇀⇁ a ∗ n ⇀⇁ b ∗ x ⇀⇁ out × a 7→ out ∗ b 7→ a

o
n

m ⇀⇁ a ∗ n ⇀⇁ b× a 7→ out ∗ b 7→ a
o

(
m ⇀⇁ a ∗ n ⇀⇁ b× eF

a,out • ∃a, l1, l3.a 7→ out , a ∗ a Z⇒ [l1 · b · l3]

∗ 〈〈t1〉〉l1,a ∗ ∃a′, l .b 7→ a, a′ ∗ a′ Z⇒ [l2] ∗ 〈〈t2〉〉l2,b ∗ 〈〈t3〉〉l3,a

)
n

m ⇀⇁ a ∗ n ⇀⇁ b× ∃in.eF
in,out • 〈〈a[t1 ⊗ b[t2]⊗ t3]〉〉in,out

o
}

Fig. 8. Proof outline for getUp implementation

— the interface sets are both unit sets,¶ i.e. Iin = {1} = Iout, and hence they can be
ignored;

— the representation function (which is the same for both data and contexts) is defined
as

〈〈(h1, h2)〉〉 def= {h1} ∗ {h2} ;
— the crust parameter set is also the unit set and the crust predicate is defined as
e = emp; and

— the implementation function is given by replacing the commands for both heaps with
their detagged versions, for example

Jn := alloc1(E)K = n := alloc(E) = Jn := alloc2(E)K .

Theorem 5.14 (Soundness of τ3). The pre-locality-preserving translation τ3 is a
locality-preserving translation.

This theorem is trivial: application preservation holds by properties of ∗; crust inclusion
holds since the crust is simply emp; and axiom correctness holds because the axioms of
H+H are almost directly translated to those of H, modulo a frame. Notice, however, that

¶ It makes no difference which set, as long as it only has one element.
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a1

v1 v2 v3

a2

w1 v1

Fig. 9. Representation of the list store a1 Z⇒ [v1 · v2 · v3] ∗ a2 Z⇒ [w1 · v1] as singly
linked lists in the heap

this translation does not satisfy the first of the properties for including the conjunction
rule (§5.3), since 〈〈(1 7→ 0, emp)〉〉 = {1 7→ 0} = 〈〈(emp, 1 7→ 0)〉〉.

If a command like allocEither from §2 were added to H + H, then without Conj it
could be soundly implemented in H by allocating a single cell and returning its address.
With Conj, however, this does not work; the implementation must diverge.

6. Locality-Breaking Translations

There is not always a close correspondence between the locality exhibited by a high-
level module and the locality of the low-level module on which it is implemented. In
this section, we reduce the burden of proof for a sound module translation in such cases
by introducing locality-breaking translations. In §6.1, we establish that locality-breaking
translations give sound module translations, and in §6.3 we give a locality-breaking trans-
lation τ4 : L→ H.

Our motivating example is an implementation of the list module (as defined in §3.3)
that represents each abstract list with a singly-linked list in the heap. An example of a
list store represented in this way is depicted in Fig. 9. Consider the operation of removing
the value v3 from the list at address a1. At the abstract level, the resource required by the
operation is simply a1 Z⇒ v3, but in the implementation the list at a1 must be traversed
all the way to the node labelled v3, in this case this is the entire list.

To apply the locality-preserving translation approach, an arbitrary amount of addi-
tional data would have to be included in the crust. This seems to defeat the purpose of
the locality-preserving approach in the first place, so perhaps a more direct approach is
called for.

In order to prove the soundness of a module translation, it is necessary to demonstrate
a transformation from high-level proofs about programs that use an abstract module,
to low-level proofs of those programs using the concrete module implementation. Induc-
tively transforming proofs is, intuitively, a good strategy because the high-level rules are
matched by the low-level rules. Since the definition of predicate translations preserves
disjunctions and entailments, and also the variable scope, the majority of the proof rules
can be inductively transformed to their low-level counterparts directly. The two excep-
tions to this are Frame and Axiom. For locality-preserving translations, Frame was
dealt with by the fact that a locality-preserving translation preserves context application,
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and Axiom was dealt with by the fact that the implementations of the basic commands
satisfy the axioms under such a translation.

When it is not appropriate to consider a translation that preserves locality, it would
be useful if it were only necessary to consider proofs which do not use the frame rule,
or, at least, only use it in a limited fashion. Intuitively, of course this should be possible.
The purpose of the frame rule is to factor out parts of the state that do not play a role
(and hence, do not change) in part of the program under consideration. It is common
folklore that it should be possible to transform a proof to one in which the frame rule is
only applied to basic statements (i.e. basic commands and assignment) by factoring in
the state earlier in the proof (i.e. at the leaves of the proof). This intuition is formalised
in the following lemma.

Lemma 6.1 (Frame-Free Derivations). Let A be an abstract module. If there is a
proof derivation of `A {P} C {Q} then there is also a derivation that only uses the frame
rule in the following ways:

Γ `A {P ′} C′ {Q′}
(†)

Γ `A {K • P ′} C′ {K •Q′} Frame
(2)

...
Γ `A {P ′} C′ {Q′}

Γ `A {(KScope × IA) • P ′} C′ {(KScope × IA) •Q′} Frame
(3)

where (†) is either Axiom or Assgn.

Consider a translation τ : A → B. Lemma 6.1 implies that it is only necessary to
provide proofs of `B {JP Kτ} JCKτ {JQKτ} when there is a proof of `A {P} C {Q} having
the prescribed form. Provided that there are proofs that the implementation of each
command in CmdA satisfies the translation of its axioms under every possible frame,
the proof in A can be transformed to a proof in B by straightforward induction. In
fact, we only need to consider singleton frames, as we can treat an arbitrary frame
as the disjunction of singletons and apply the Disj rule. We can further reduce our
considerations to those singleton frames with no variable scope component, since the
variable scope component can be added by the Frame rule at the low-level. These
conditions are formalised in the definition of a locality-breaking translation.

Definition 6.1 (Locality-Breaking Translation). A locality-breaking translation τ :
A→ B is a module translation having the property that, for all c ∈ CA, ϕ ∈ CmdA, and
(P,Q) ∈ Ax JϕKA there is a derivation of

`B {J{(∅, c)} • P Kτ} JϕKτ {J{(∅, c)} •QKτ} .

Theorem 6.2 (Soundness of Locality-Breaking Translations). A locality-break-
ing translation is a sound module translation.

A locality-breaking translation transforms proofs that use locality (in the form of the
Frame rule) at the abstract level into proofs that do not. To do so, we must effectively
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prove directly that the abstract Frame rule is sound with respect to the implementation
of each module operation. Hence we say that such a module translation provides a fiction
of locality.

Since a locality-breaking translation transforms proofs that use locality (in the form
of the frame rule) into proofs that do not, we

6.1. Proof of Soundness of Locality-Breaking Translations

Proof of Lemma 6.1 The result is a special case of the more general result, that if there
is a derivation of Γ `A {P} C {Q} then there is a derivation of F (Γ) `A {P} C {Q} with
the required property, where

F (Γ) = {f : K • P� K • Q | K ∈ P(CA) and (f : P� Q) ∈ Γ} .

Note that Γ ⊆ F (Γ) = F (F (Γ)). Since procedure specifications are only relevant to the
PDef and PCall rules, we will omit them when considering other rules.

The proof of the generalised statement is by induction on the depth of the derivation.
If the last rule applied in the derivation is anything other than Frame or PDef then it
is simple to transform the derivation: simply apply the induction hypothesis to transform
all of the premises and then apply the last rule using F (γ) in place of γ.

Consider the case where the last rule of the derivation is Frame:

...
{P ′} C {Q′}

(‡)

{K • P ′} C {K •Q′} Frame

By applying the disjunction rule, this can be reduced to the case of singleton frames {c},
transforming the derivation as follows:

for all c ∈ K,

...
{P ′} C {Q′}

(‡)

{{c} • P ′} C {{c} •Q′} Frame

{K • P ′} C {K •Q′} Disj

Now consider cases for (‡), the last rule applied before Frame.
If the rule is Cons then, since P ⊆ P ′ implies that {c} • P ⊆ {c} • P , the application

of the Frame can be moved earlier in the derivation, transforming it as follows:

{c} • P ′ ⊆ {c} • P ′′

{c} •Q′ ⊆ {c} •Q′′
{P ′′} C {Q′′}

{{c} • P ′′} C {{c} •Q′′} Frame

{{c} • P ′} C {{c} •Q′} Cons

The application of the frame rule can then by removed by the inductive hypothesis.
If the rule is Disj then, since • right-distributes over ∨, the derivation can be trans-
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formed as follows:

for all i ∈ I,

...
{Pi} C {Qi}

{{c} • Pi} C {{c} •Qi}
Frame{

{c} •
∨
i∈I Pi

}
C
{
{c} •

∨
i∈I Qi

} Disj

If the rule is Local then it is possible that the frame c includes a program variable
with the same name as one that is scoped by the local block. This means that the frame
cannot in general be pushed into the local block. However, the frame can be split into
scope and store components, that is, for some ρ ∈ Scope and cA ∈ CA, c = (ρ, cA) and so
{c} = ({ρ} × IA) ◦ {(∅, cA)}. Hence the derivation can be transformed as follows:

...
{(x ⇀⇁ −× IA) • P ′} C′ {(x ⇀⇁ −× IA) •Q′}
{(x ⇀⇁ −× {cA}) • P ′} C′ {(x ⇀⇁ −× {cA}) •Q′}

Frame

{{(∅, cA)} • P ′} local x in C′ {{(∅, cA)} •Q′} Local

{{c} • P ′} local x in C′ {{c} •Q′} Frame

The side condition for the Local rule, that ({(∅, cA)} •P ′)∧ vsafe(x ) ≡ ∅, follows from
the original side-condition that P ′ ∧ vsafe(x ) ≡ ∅. The applications of the Frame rule
are now either of the form of (3) or can be removed by the inductive hypothesis.

If the rule is PCall then it is again necessary to split the framing context into its
components, that is, some ρ ∈ Scope and cA ∈ CA with c = (ρ, cA). The PCall rule uses
some f : P� Q ∈ Γ. By definition, f : {cA}•P� {cA}•Q ∈ F (Γ). Hence, the derivation
can be transformed as follows:

{(−→r ⇀⇁ −→w ∗ ρ′)} × DA ⊆ vsafe(
−→
E )

F (Γ) `A

{
(−→r ⇀⇁ −→v ∗ ρ′)×

(
{(cA)} • P

(
E

r−→
E

z
(−→r ⇀⇁ −→v ∗ ρ′)

))}
call −→r := f(

−→
E )

{∃−→w . {(−→r ⇀⇁ −→w ∗ ρ′)} × ({(cA)} • Q (−→w ))}

PCall

F (Γ) `A

{
{(ρ, cA)} •

(
(−→r ⇀⇁ −→v ∗ ρ′)× P

(
E

r−→
E

z
(−→r ⇀⇁ −→v ∗ ρ′)

))}
call −→r := f(

−→
E )

{{(ρ, cA)} • (∃−→w . {(−→r ⇀⇁ −→w ∗ ρ′)} × Q (−→w ))}

Frame

The application of the frame rule is now of the form of (3), with the frame being {ρ}×IA.
The remaining cases for the penultimate rule are straightforward.
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Consider the case when PDef is the last rule applied:

for all (fi : P� Q) ∈ Γ,

...

Γ′,Γ `A
{∃−→v .−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −× P(−→v )}

Ci
{∃−→w .−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w × Q(−→w )}

(?)

(?)

...
Γ′,Γ `A {P} C′ {Q}

Γ′ `A {P} procs −→r1 := f1(−→x1) {C1}, . . . ,−→rk := fk(−→xk) {Ck} in C′ {Q} PDef

The derivations for the function bodies can be extended by applying the frame rule to
give:

for all K ∈ P(CA),
(fi : P� Q) ∈ Γ,

...

Γ′,Γ `A
{∃−→v .−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −× P(−→v )}

Ci
{∃−→w .−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w × Q(−→w )}

Γ′,Γ `A
{∃−→v .−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −× (K • P(−→v ))}

Ci
{∃−→w .−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w × (K • Q(−→w ))}

Frame

These derivations and the derivation of the premise Γ′,Γ `A {P} C′ {Q} can be trans-
formed by the inductive hypothesis so that they only use the frame rule in the required
manner and use the procedure environment F (Γ′,Γ) = F (Γ′), F (Γ). These derivations
can then be recombined to give the required derivation as follows:

for all (fi : P� Q) ∈ F (Γ),

...

F (Γ′,Γ) `A
{∃−→v .−→x i ⇀⇁ −→v ∗ −→r i ⇀⇁ −× P(−→v )}

Ci
{∃−→w .−→x i ⇀⇁ − ∗ −→r i ⇀⇁ −→w × Q(−→w )}

(?)

(?)

...
F (Γ′,Γ) `A {P} C′ {Q}

F (Γ′) `A

{P}
procs −→r1 := f1(−→x1) {C1}, . . . ,−→rk := fk(−→xk) {Ck} in C′

{Q}

PDef

The two further conditions on the PDef rule, not included above, hold for the trans-
formed derivation because F preserves the names of the functions in procedure specifi-
cations.

Let τ : A → B be a locality-breaking translation. To show that τ is a sound mod-
ule translation, it is necessary to establish that whenever there is a derivation of `A
{P} C {Q} there is a derivation of `B {JP Kτ} JCKτ {JQKτ}. First, transform the high-
level derivation using Lemma 6.1 into a frame-free derivation. Now transform this deriva-
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tion to the required low-level derivation by replacing each subderivation of the form

Γ `A {P ′} ϕ {Q′}
Axiom

Γ `A {K • P ′} ϕ {K •Q′}
Frame

with the derivation

for all (ρ, cA) ∈ K,

(?)
`B {J{(∅, cA) • P ′}K} JϕK {J{(∅, cA) •Q′}K}
`B {J{(ρ, cA) • P ′}K} JϕK {J{(ρ, cA) •Q′}K} Frame

`B {JK • P ′K} JϕK {JK •Q′K} Disj

where (?) stands for the framed derivation provided by the locality-breaking translation,
and replacing all other rules with their low-level equivalents.

This completes the proof of Theorem 6.2.

6.2. Including the Conjunction Rule

If we wish to add the conjunction rule to the locality-breaking theory, we can be add
a case to the proof of Lemma 6.1 to deal with pushing Frame over Conj, in a similar
fashion to Disj, provided that the context algebra AA is left-cancellative.

Definition 6.2 (Left-cancellativity). A context algebra A = (C,D, ◦, •, I,0) is left-
cancellative if, for all c ∈ C, d1, d2, d3 ∈ D, c • d1 = c • d2 = d3 implies d1 = d2.

Left-cancellativity ensures that {c} •
∧
i∈I Pi ≡

∧
i∈I {c} • Pi. It is also necessary

for the predicate translation J(·)K to distribute over conjunction; this is equivalent to
the condition that the abstraction relation α is functional (that is, it defines a partial
function from concrete states to abstract states).

6.3. Module Translation: τ4 : L→ H

We return to the example of an implementation of the list-store module L with singly-
linked lists in the heap module H to illustrate a locality-breaking translation.

Definition 6.3 (τ4 : L → H). The module translation τ4 : L → H is constructed as
follows:

— the abstraction relation ατ4 ⊆ Heap× LStore is defined by

h ατ4 ls ⇐⇒ h ∈ (|ls|)

where (|(·)|) : LStore→ P(Heap) is defined inductively as follows:

(|emp|) def= emp

(|a Z⇒ l ∗ ls|) def= false

(|a Z⇒ [l ] ∗ ls|) def= ∃x. a 7→ x ∗ 〈〈l〉〉(x,nil) ∗ (|ls|)
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where

〈〈∅〉〉(x,y) def= (x = y) ∧ emp

〈〈v〉〉(x,y) def= x 7→ v, y

〈〈l1 · l2〉〉(x,y)
def= ∃z. 〈〈l1〉〉(x,z) ∗ 〈〈l2〉〉(z,y); and

— the substitutive implementation function is given by replacing each list-module com-
mand with a call to the correspondingly-named procedure given in Figs. 10 and 11.

Note that the abstraction relation is not surjective, since incomplete lists do not have
heap representations (they are mapped to false). The intuition behind this approach is
that incomplete lists are purely a useful means to the ultimate end of reasoning about
complete lists. Typically, clients of the list module will work with complete lists (only
complete lists may be created or deleted, for a start) and so restricting their specifications
to only describe stores of complete lists should be no significant problem. Of course, it
is perfectly acceptable to use assertions and specifications that refer to incomplete lists
within client proofs; the transformation of this proof to a low-level proof will complete
all of these lists by making use of Lemma 6.1.

The fact that incomplete lists do not have representations can be seen as an advantage
from the point of view of establishing that τ4 is a locality-breaking translation. This is
because it is only necessary to prove that the framed axioms hold under the transla-
tion for frames that complete all of the lists in the precondition. In all other cases, the
precondition is false, and so the triple holds trivially.

Theorem 6.3 (Soundness of τ4). The module translation τ4 is a locality-breaking
translation.

Again, we omit the full details of this proof, which can be found in (Dinsdale-Young
et al., 2010b), but give a particular case: getNext. Recall the axiom for getNext:

Ax Jx := E1.getNext(E2)KL
def={(

(x ⇀⇁ v ∗ ρ× a Z⇒ w · u) ,
(x ⇀⇁ u ∗ ρ× a Z⇒ w · u)

) ∣∣∣∣ a = E JE1K (x ⇀⇁ v ∗ ρ) and
w = E JE2K (x ⇀⇁ v ∗ ρ)

}
∪{(

(x ⇀⇁ v ∗ ρ× a Z⇒ [l · w]) ,
(x ⇀⇁ nil ∗ ρ× a Z⇒ [l · w])

) ∣∣∣∣ a = E JE1K (x ⇀⇁ v ∗ ρ) and
w = E JE2K (x ⇀⇁ v ∗ ρ)

}
.

Fix arbitrary a ∈ Addr, w, u ∈ Val, l ∈ Val∗ and c ∈ CLStore. It is sufficient to establish
that the procedure body of getNext meets the following specifications:

{J(i ⇀⇁ a) ∗ (w ⇀⇁ w) ∗ (v ⇀⇁ −)× ({c} • a Z⇒ w · u)K}
Jv := i .getNext(w )K

{J(i ⇀⇁ a) ∗ (w ⇀⇁ w) ∗ (v ⇀⇁ u)× ({c} • a Z⇒ w · u)K}
(4)

{J(i ⇀⇁ a) ∗ (w ⇀⇁ w) ∗ (v ⇀⇁ −)× ({c} • a Z⇒ [l · w])K}
Jv := i .getNext(w )K

{J(i ⇀⇁ a) ∗ (w ⇀⇁ w) ∗ (v ⇀⇁ nil)× ({c} • a Z⇒ [l · w])K}
. (5)

Either specification (4) holds trivially, since the precondition is equivalent to false, or
c = a Z⇒ [l1 · − · l2] ∗ ls for some l1, l2 ∈ Lst with w and u not in either l1 or l2, and some
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E.value
def
= E E.next

def
= E + 1

x := newNode()
def
= x := alloc(2) x := newRoot()

def
= x := alloc(1)

disposeNode(x)
def
= dispose(x , 2) disposeRoot(x)

def
= dispose(x , 1)

v := getHead(i) {
local x in

x := [i ] ;

if x = nil then

v := x

else

v := [x .value]

}

v := getTail(i) {
local x , y in

x := [i ] ;

if x = nil then

v := x

else

y := [x .next] ;

while y 6= nil do

x := y ;

y := [x .next] ;

v := [x .value]

}

v := getNext(i , w) {
local x in

x := [i ] ;

v := [x .value] ;

while v 6= w do

x := [x .next] ;

v := [x .value] ;

x := [x .next] ;

if x = nil then

v := x

else

v := [x .value]

}

v := getPrev(i , w) {
local x , y in

x := [i ] ;

v := [x .value] ;

if v = w then

v := nil

else

while v 6= w do

y := x;

x := [y .next] ;

v := [x .value] ;

v := [y .value]

}

v := pop(i) {
local x , y in

x := [i ] ;

if x = nil then

v := x

else

y := [x .next] ;

[i ] := y ;

v := [x .value] ;

disposeNode(x)

}

push(i , v) {
local X , y in

x := newNode();

[x .value] := v ;

y := [i ] ;

[x .next] := y ;

[i ] := x

}

Fig. 10. Linked-list-based list store implementation
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remove(i , v) {
local u , x , y , z in

x := [i ] ;

u := [x .value] ;

y := [x .next] ;

if u = v then

[i ] := y ;

disposeNode(x)

else

u := [y .value] ;

while u 6= v do

x := y ;

y := [x .next] ;

u := [y .value] ;

z := [y .next] ;

[x .next] := z ;

disposeNode(y)

}

i := newList() {
i := newRoot();

[i ] := nil

}

insert(i , v , w) {
local u , x , y , z in

x := [i ] ;

u := [x .value] ;

while u 6= v do

x := [x .next] ;

u := [x .value] ;

y := [x .next] ;

z := newNode();

[z .value] := w ;

[z .next] := y ;

[x .next] := z

}

deleteList(i) {
local x , y in

x := [i ] ;

while x 6= nil do

y := x ;

x := [y .next] ;

disposeNode(y) ;

disposeRoot(i)

}

Fig. 11. Linked-list-based list store implementation

ls ∈ LStore. A proof outline for this case is given in Fig. 13. Similarly, either specification
(5) holds trivially or c = ls for some ls ∈ LStore. A proof outline for this case is given
in Fig. 14. In both cases the getNext implementation performs the same search for the
value w in the list. The proof outline for this common part is given in Fig. 12.

7. Conclusions

We have shown how to refine module specifications, given by abstract local reasoning, into
correct implementations. This provides a justification for the soundness of abstract local
reasoning with context algebras. We have identified two general approaches for proving
the correctness of an implementation with respect to an abstract specification: locality-
preserving and locality-breaking translations. Locality-preserving translations relate the
abstract locality of a module with the low-level locality of its implementation. This is
subtle since disjoint structures at the high-level are not quite disjoint at the low-level,
because of the additional crust that is required to handle the pointer surgery. Locality-
preserving translations thus establish a “fiction of disjointness” at the abstract level.
Meanwhile, locality-breaking translations establish a “fiction of locality”, by justifying
abstract locality even though this locality is not matched by the implementation.

We now conclude with some discussion of our choices and of the possible future exten-
sions of our work.
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n
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ − ∗ x ⇀⇁ −× a 7→ p ∗ 〈〈l1 · w〉〉(p,y)

o
x := [i ] ;n
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ − ∗ x ⇀⇁ p× a 7→ p ∗ 〈〈l1 · w〉〉(p,y)

o
(
∃p. w ⇀⇁ w ∗ v ⇀⇁ − ∗ x ⇀⇁ p×“

(l1 = ∅ ∧ p 7→ w, y) ∨ (∃v, l ′1, q. l1 = v · l ′′1 ∧ p 7→ w, q ∗ 〈〈l ′′1 · w〉〉(q,y))
” )

v := [x .value] ;(
∃v, x, l ′1, l ′′1 , q. w ⇀⇁ w ∗ v ⇀⇁ v ∗ x ⇀⇁ x×
l1 · w = l ′1 · v · l ′′1 ∧ 〈〈l ′1〉〉(p,x) ∗ x 7→ v, q ∗ 〈〈l ′′1 〉〉(q,y)

)
while v 6= w do(

∃v, v′, x, x′, l ′1, l ′′1 , q. w ⇀⇁ w ∗ v ⇀⇁ v ∗ x ⇀⇁ x×
l1 · w = l ′1 · v · v′ · l ′′1 ∧ 〈〈l ′1〉〉(p,x) ∗ x 7→ v, x′ ∗ x′ 7→ v′, q ∗ 〈〈l ′′1 〉〉(q,y)

)
x := [x .next] ;

v := [x .value](
∃v, v′, x, x′, l ′1, l ′′1 , q. w ⇀⇁ w ∗ v ⇀⇁ v′ ∗ x ⇀⇁ x′ ×
l1 · w = l ′1 · v · v′ · l ′′1 ∧ 〈〈l ′1〉〉(p,x) ∗ x 7→ v, x′ ∗ x′ 7→ v′, q ∗ 〈〈l ′′1 〉〉(q,y)

)
(
∃v, x, l ′1, l ′′1 , q. w ⇀⇁ w ∗ v ⇀⇁ v ∗ x ⇀⇁ x×
l1 · w = l ′1 · v · l ′′1 ∧ 〈〈l ′1〉〉(p,x) ∗ x 7→ v, q ∗ 〈〈l ′′1 〉〉(q,y)

)
;n

∃x. w ⇀⇁ w ∗ v ⇀⇁ w ∗ x ⇀⇁ x× 〈〈l1〉〉(p,x) ∗ x 7→ w, y
o

x := [x .next]n
w ⇀⇁ w ∗ v ⇀⇁ w ∗ x ⇀⇁ y × 〈〈l1 · w〉〉(p,y)

o
n
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ w ∗ x ⇀⇁ y × a 7→ p ∗ 〈〈l1 · w〉〉(p,y)

o
Fig. 12. Proof outline for search part of getNext implementation (common part)

7.1. On Locality-Preserving versus Locality-Breaking

Despite the fact that their names imply a black-and-white distinction between locality-
preserving and locality-breaking translations, there is no clear distinction between where
the two techniques are applicable.

As an example, consider the implementation of the list module from §6.3. We proved
that this implementation gave a sound module translation using the locality-breaking
technique, since some of the basic operations have a low-level footprint that incorporates
an arbitrarily large portion of the linked list. However, it is quite reasonable to identify
portions of the low-level state (individual nodes in a linked list) that correspond to
portions of the high level state (individual elements of the corresponding list). In fact,
the locality-preserving approach can be applied to this implementation, by treating the
portion of the linked list that leads up to the nodes of interest as crust.

On the other hand, consider the implementation of the tree module from §5.5. In this
case, the crust could be arbitrarily large, accounting for all of the siblings of the top level
of the tree. This suggests that the locality-breaking approach is also applicable.

Clearly, there is a significant overlap in the applicability of the two approaches, but it
turns out that there are no cases in which one approach is applicable but the other is not.
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v := getNext(i , w) {n
Ji ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ −× a Z⇒ [l1 · w · u · l2] ∗ lsK

o
n
∃y, z, p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ −× a 7→ p ∗ 〈〈l1 · w〉〉(p,y) ∗ y 7→ u, z ∗ 〈〈l2〉〉(z,nil) ∗ (|ls|)

o
n
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ −× a 7→ p ∗ 〈〈l1 · w〉〉(p,y) ∗ y 7→ u, z

o
local x inn

∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ − ∗ x ⇀⇁ −× a 7→ p ∗ 〈〈l1 · w〉〉(p,y) ∗ y 7→ u, z
o

(see Fig. 12)n
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ w ∗ x ⇀⇁ y × a 7→ p ∗ 〈〈l1 · w〉〉(p,y) ∗ y 7→ u, z

o
if x = nil then

v := x

else

v := [x .value]n
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ u ∗ x ⇀⇁ y × a 7→ p ∗ 〈〈l1 · w〉〉(p,y) ∗ y 7→ u, z

o
n
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ u× a 7→ p ∗ 〈〈l1 · w〉〉(p,y) ∗ y 7→ u, z

o
n
∃y, z, p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ u× a 7→ p ∗ 〈〈l1 · w〉〉(p,y) ∗ y 7→ u, z ∗ 〈〈l2〉〉(z,nil) ∗ (|ls|)

o
n

Ji ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ u× a Z⇒ [l1 · w · u · l2] ∗ lsK
o

}

Fig. 13. Proof outline for getNext implementation (success case)

A locality-preserving translation can be used to construct a locality-breaking translation
and vice versa.

From locality-preserving to locality-breaking is simple. Assume that τ : A → B is a
locality-preserving translation. For all c ∈ CA, ϕ ∈ CmdA and (P,Q) ∈ Ax JϕKA, there
is a derivation of `A {{∅, c} • P} ϕ {{∅, c} •Q} which simply uses Axiom followed by
Frame. By the soundness of locality-preserving translations, there must therefore also
be a derivation of `B {J{∅, c} • P Kτ} JϕKτ {J{∅, c} •QKτ}. Thus τ defines a locality-
breaking translation.

From locality-breaking to locality-preserving is slightly trickier. Assume that τ : A→ B
is a locality-breaking translation. For the interface sets, choose Iin = {1} and Iout = CA.
Define the representation functions for data χA and contexts c as follows:

〈〈χA〉〉c = {χB | χB ατ (c • χA)}

〈〈c〉〉c1c2 =

{
IB if c2 = c1 • c
∅ otherwise.

Finally, choose F = {1} and define ec = IB. Application preservation holds by construc-
tion, as does crust inclusion. Axiom correctness simply reduces to the criterion that τ
is a locality-breaking translation, i.e. that the axioms, with each singleton frame, hold
under translation. Thus τ defines a locality-preserving translation.
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v := getNext(i , w) {n
Ji ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ −× a Z⇒ [l · w] ∗ lsK

o
n
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ −× a 7→ p ∗ 〈〈l · w〉〉(p,nil) ∗ (|ls|)

o
n
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ −× a 7→ p ∗ 〈〈l · w〉〉(p,nil)

o
local x inn

∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ − ∗ x ⇀⇁ −× a 7→ p ∗ 〈〈l · w〉〉(p,nil)
o

(see Fig. 12)n
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ w ∗ x ⇀⇁ nil × a 7→ p ∗ 〈〈l · w〉〉(p,nil)

o
if x = nil then

v := x

else

v := [x .value]n
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ nil ∗ x ⇀⇁ nil × a 7→ p ∗ 〈〈l · w〉〉(p,nil)

o
n
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ nil × a 7→ p ∗ 〈〈l · w〉〉(p,nil)

o
n
∃p. i ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ nil × a 7→ p ∗ 〈〈l · w〉〉(p,nil) ∗ (|ls|)

o
n

Ji ⇀⇁ a ∗ w ⇀⇁ w ∗ v ⇀⇁ nil × a Z⇒ [l · w] ∗ lsK
o

}

Fig. 14. Proof outline for getNext implementation (failure case)

Note that the transformation from locality-breaking to locality-preserving translations
is not a perfect inverse of the transformation in the other direction. This is because
locality-breaking transformations do not embody the notion of representing a substruc-
ture, and therefore it is necessary to define the representation functions by providing the
entire enveloping context as the interface.

7.2. On Abstract Predicates

One way of viewing the translation functions is as abstract predicates: that is, JP K is an
abstract predicate parametrised by P . However, viewing this as a completely abstract
entity does not confer abstract local reasoning. Exposing such axioms as JP K ∨ JQK ↔
JP ∨QK is a start, it allows the low-level disjunction rule to implement its high-level
counterpart, and is possible with some formulations of abstract predicates (Dinsdale-
Young et al., 2010a). However, abstract predicates do not currently provide a mechanism
for exporting meta-theorems such as the soundness of the abstract frame rule. That is
to say, there is no way to expose the fact that if {JP K} C {JQK} holds then so does
{JK • P K} C {JK • P K}. This work suggests that including such a mechanism could be
a valuable addition to the abstract predicate methodology.
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7.3. On Concurrency

Extending the results presented here to a concurrent setting is not entirely trivial. A
separation logic-style parallel rule is only appropriate when the model has a commutative
∗-like operator; while the heap and list modules have such an operator, the tree model
does not. (The segment logic of Gardner and Wheelhouse (2009) is a promising approach
to introducing a commutative ∗ to structured models such as trees.)

Assume that we have a sound module translation from an abstract module to a concrete
one, and that both models include a commutative ∗ connective, such that, for every state
d there is some context c such that, for all states d′, d∗d′ = c•d′. If the implementations
of the module operations behave as atomic operations, then the separation logic parallel
rule should be sound at the abstract level. That is, if

{JP1K} JC1K {JQ1K}
{JP2K} JC2K {JQ2K}

then

{JP1 ∗ P2K} JC1 ‖ C2K {JQ1 ∗Q2K} .

Intuitively, this is because the operations of the threads are effectively interleaved, and
so the state of the other thread at each point can be viewed as a frame.

An alternative appproach is that of Dinsdale-Young, Dodds, Gardner, Parkinson, and
Vafeiadis (2010a) on concurrent abstract predicates (CAP). CAP presents a fiction of
disjointness for concurrent program modules by building abstractions on top of a powerful
permission system. This makes it possible to express sophisticated notions of abstract
resource, akin to those we consider here. Ultimately, we hope to reach a unified theory
of abstraction and refinement that supports fictions of locality and disjointness in both
the sequential and concurrent settings.
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